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Abstract

Let M be a matroid representable over a (partial) field P and B a
matrix representable over a sub-partial field P′ ⊆ P. We say that B confines
M to P′ if, whenever a P-representation matrix A of M has a submatrix
B, A is a scaled P′-matrix. We show that, under some conditions on the
partial fields, on M , and on B, verifying whether B confines M to P′
amounts to a finite check. A corollary of this result is Whittle’s Stabilizer
Theorem [34].

A combination of the Confinement Theorem and the Lift Theorem
from Pendavingh and Van Zwam [19] leads to a short proof of Whit-
tle’s characterization of the matroids representable over GF(3) and other
fields [33].

We also use a combination of the Confinement Theorem and the Lift
Theorem to prove a characterization, in terms of representability over
partial fields, of the 3-connected matroids that have k inequivalent repre-
sentations over GF(5), for k = 1, . . . , 6.

Additionally we give, for a fixed matroid M , an algebraic construction
of a partial field PM and a representation matrix A over PM such that
every representation of M over a partial field P is equal to ϕ(A) for some
homomorphism ϕ : PM → P. Using the Confinement Theorem we prove
an algebraic analog of the theory of free expansions by Geelen, Oxley,
Vertigan, and Whittle [12].

1 Introduction

Questions regarding the representability of matroids pervade matroid the-
ory. A famous theorem is the characterization of regular matroids due to
Tutte. We say that a matrix over the real numbers is totally unimodular if
the determinant of every square submatrix is in the set {−1,0, 1}.

Theorem 1.1 (Tutte [26]). Let M be a matroid. The following are equiva-
lent:
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(i) M is representable over GF(2) and some field that does not have char-
acteristic 2;

(ii) M is representable over R by a totally unimodular matrix;

(iii) M is representable over every field.

Whittle gave a similar characterization of the matroids representable
over GF(3) and some other field. We say that a matrix over the real
numbers is dyadic if the determinant of every square submatrix is in the
set {0} ∪ {±2k | k ∈ Z}. We say that a matrix over the complex numbers
is sixth-roots-of-unity ( 6

p
1) if the determinant of every square submatrix

is in the set {0} ∪ {ζl | l ∈ Z}, where ζ is a root of x2 − x + 1 = 0 (so
ζ6 = 1).

Theorem 1.2 (Whittle [33]). Let M be a 3-connected matroid that is rep-
resentable over GF(3) and some field that is not of characteristic 3. Then at
least one of the following holds:

(i) M is representable over R by a dyadic matrix;

(ii) M is representable over C by a 6
p

1-matrix.

Whittle’s characterization was, in fact, more precise. He also char-
acterized the matroids as in (i),(ii) by the set of fields over which M is
representable. In [19] we proved the Lift Theorem, a general theorem
from which Whittle’s results of the latter type follow. But the Lift Theo-
rem is not sufficient to prove that Whittle’s classification is complete. In
this paper we will fill this gap by proving the Confinement Theorem. Us-
ing this we will be able to give a comparatively short proof of Whittle’s
theorem.

The Confinement Theorem has other applications. For instance, Whit-
tle’s Stabilizer Theorem [34] is a corollary of it. Semple and Whittle’s [22]
result that every representable matroid with no U2,5- and no U3,5-minor
is either binary or ternary can be proven with it, again by combining it
with the Lift Theorem. We were led to the Confinement Theorem by our
study of matroids with inequivalent representations over GF(5). Oxley,
Vertigan, and Whittle [18] proved that a 3-connected quinary1 matroid
never has more than 6 inequivalent representations. Using the Lift Theo-
rem and the Confinement Theorem we were able to extend that result as
follows:

Theorem 1.3. Let M be a 3-connected quinary matroid. Then M has at
most 6 inequivalent representations over GF(5). Moreover, the following
hold:

(i) If M has at least two inequivalent representations over GF(5), then M
is representable over C, over GF(p2) for all primes p ≥ 3, and over
GF(p) when p ≡ 1 mod 4.

(ii) If M has at least three inequivalent representations over GF(5), then
M is representable over every field with at least five elements.

(iii) If M has at least four inequivalent representations over GF(5), then
M is not binary and not ternary.

1Some authors prefer the word quinternary
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(iv) If M has at least five inequivalent representations over GF(5), then M
has six inequivalent representations over GF(5).

We note here that we proved (i) in [19], and that (iii) is a special case
of a result by Whittle [32].

We will now give a more detailed overview of the contents of this
paper. The framework for our results is the theory of partial fields, intro-
duced by Semple and Whittle [23]. A partial field is an algebraic structure
resembling a field, but in which addition is not always defined. Semple
and Whittle developed a theory of matroids representable over partial
fields. In [19] we gave a proof of the theorem by Vertigan that partial
fields can be obtained as the restriction of a ring to a subgroup of its
group of units. In this paper we will use this as definition of a partial
field, rather than the axiomatic setup by Semple and Whittle. We repeat,
and sometimes extend, the relevant definitions and results from Semple
and Whittle [23] and Pendavingh and Van Zwam [19] in Section 2 of this
paper. We note here that Camion [2] (translated and updated in [3])
introduced a class of matrices equivalent to our partial-field matrices. His
results have almost no overlap with ours.

Sometimes a matroid that is representable over a partial field P is
in fact also representable over a sub-partial field P′ ⊆ P. Let M , N be
matroids such that N is a minor of M . Suppose that, whenever a P-
representation A of M contains a scaled P′-representation of N , A itself
is a scaled P′-representation of M . Then we say that N confines M to P′.
The following theorem reduces verifying if N confines M to a finite check.

Theorem 1.4. Let P,P′ be partial fields such that P′ is an induced sub-
partial field of P. Let M , N be 3-connected matroids such that N is a minor
of M. Then exactly one of the following holds:

(i) N confines M to P′;
(ii) M has a 3-connected minor M ′ such that

• N does not confine M ′ to P′;
• N is isomorphic to M ′/x, M ′ \ y, or M ′/x \ y for some x , y ∈

E(M ′);
• If N is isomorphic to M ′/x\ y then at least one of M ′/x , M ′\ y is

3-connected.

We will define induced sub-partial fields in Subsection 2.9, but note
here that if a sub-partial field is induced then p+q ∈ P′ whenever p, q ∈ P′
and p+ q ∈ P. The main result of this paper, the Confinement Theorem
(Theorem 3.3) is stated in terms of individual representation matrices.
Theorem 1.4 is a direct corollary.

The Confinement Theorem closely resembles several results related
to inequivalent representations of matroids. These results are Whittle’s
Stabilizer Theorem [34], the extension to universal stabilizers by Geelen,
Oxley, Vertigan, and Whittle [11], and the theory of free expansions by
the same authors [12]. In fact, Whittle’s Stabilizer Theorem is a corol-
lary of the Confinement Theorem. To prove this we use the observation
that multiple representations of a matroid can be combined into a single
representation over a bigger partial field.
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In most of our applications we combine the Confinement Theorem
with the Lift Theorem from [19]. We first compute the lift partial field
for a class of P-representable matroids. Then we use the Confinement
Theorem to split off certain induced sub-partial fields from this lift partial
field. This approach can be used, for instance, to give an alternative proof
of Whittle’s [31, 33] characterization of the matroids representable over
GF(3) and other fields. This proof can be found in Subsection 5.1.

In Section 4 we shift our focus to more algebraic techniques. A ques-
tion that matroid theorists have considered is, for a fixed matroid M , the
determination of all primes p such that M is representable over some
field of characteristic p. Vámos [27], White [28, 29], and Fenton [7] all
answer this question by constructing, for a fixed matroid M , a ring RM ,
such that representations of M over a field F are related to ring homo-
morphisms RM → F. Recently Baines and Vámos [1] gave an algorithm
to compute the set of characteristics for a given matroid by computing
certain Gröbner bases over the integers. We refer to Oxley [16, Section
6.8] and White [30, Chapter 1] for more details on this subject.

In this paper we strengthen the construction by White [28] to give a
partial field P and a matrix A with entries in P, such that every representa-
tion of M over a partial field P′ is equivalent to ϕ(A) for some partial-field
homomorphism ϕ : P→ P′. The advantage of our approach over that of
the papers mentioned above is that the matrix A is itself a representation
of M over P, rather than an object from which representations can be
created. Fenton [7] created a smaller ring that retained the universality
of White’s construction. Likewise we will show that a sub-partial field
PM ⊆ P suffices to represent M . We will prove that PM is the smallest
such partial field. We call PM the universal partial field of M .

In Subsection 4.3 we compute the universal partial field for two classes
of matroids, and show that the partial fields studied in Pendavingh and
Van Zwam [19] are all universal. We conclude Section 4 with another
corollary of the Confinement Theorem, which we call the Settlement The-
orem.

In Subsection 5.2 we use the combined power of the Lift Theorem
from [19], the Confinement Theorem, and the algebraic constructions to
prove Theorem 1.3. First we use the theory of universal partial fields
to characterize the number of representations of quinary matroids with
no U2,5- and U3,5-minor. Then we construct, for each k ∈ {1, . . . , 6}, a
partial field Hk over which a 3-connected quinary matroid M with a U2,5-
or U3,5-minor is representable if and only if it has at least k inequivalent
representations over GF(5). The result then follows by considering the
homomorphisms Hk → F for fields F.

We conclude in Section 6 with a number of unsolved problems. In
an appendix we list all partial fields discussed in this paper and in [19],
along with some of their properties.

2 Preliminaries

In Subsections 2.1–2.8 we define partial fields and summarize the rel-
evant definitions and results from Semple and Whittle [23] and Pen-
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davingh and Van Zwam [19]. After that we give some extra definitions
and some first new results.

2.1 Notation

If S, T are sets, and f : S→ T is a function, then we define

f (S) := { f (s) | s ∈ S}. (1)

We denote the restriction of f to S′ ⊆ S by f |S′ . We may simply write e
instead of the singleton set {e}.

If S is a subset of nonzero elements of some group, then 〈S〉 is the
subgroup generated by S. If S is a subset of elements of a ring, then
〈S〉 denotes the multiplicative subgroup generated by S. All rings are
commutative with identity. The group of elements with a multiplicative
inverse (the units) of a ring R is denoted by R∗. If R is a ring and S a set
of symbols, then we denote the polynomial ring over R on S by R[S].

Our graph-theoretic notation is mostly standard. All graphs encoun-
tered are simple. We use the term cycle for a simple, closed path in a
graph, reserving circuit for a minimal dependent set in a matroid. An
undirected edge (directed edge) between vertices u and v is denoted
by uv and treated as a set {u, v} (an ordered pair (u, v)). We define
δ(v) := {e ∈ E(G) | e = uv for some u ∈ V}. If G = (V, E) and V ′ ⊆ V ,
then we denote the induced subgraph on V ′ by G[V ′]. For S, T ⊆ V we
denote by dG(S, T ) the length of a shortest S− T path in G.

For matroid-theoretic concepts we follow the notation of Oxley [16].
Familiarity with the definitions and results in that work is assumed.

2.2 Partial fields

A partial field is a pair P = (R, G), where R is a commutative ring with
identity and G is a subgroup of the group of units R∗ of R such that −1 ∈
G. If 1 = 0 in R then we say the partial field is trivial. When P is referred
to as a set, then it is the set G ∪ {0}. We define P∗ := G. Every field F can
be considered as a partial field (F,F∗).

A useful construction is the following.

Definition 2.1. If P1 = (R1, G1),P2 = (R2, G2) are partial fields, then the
direct product is

P1 ⊗ P2 := (R1 × R2, G1 × G2). (2)

Recall that in the product ring addition and multiplication are defined
componentwise. It is readily checked that P1 ⊗ P2 is again a partial field.

A function ϕ : P1→ P2 is a partial field homomorphism if

(i) ϕ(1) = 1;

(ii) for all p, q ∈ P1, ϕ(pq) = ϕ(p)ϕ(q);

(iii) for all p, q ∈ P1 such that p+ q ∈ P1, ϕ(p) +ϕ(q) = ϕ(p+ q).
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If P1 = (R1, G1), P2 = (R2, G2), and ϕ : R1 → R2 is a ring homomorphism
such that ϕ(G1)⊆ G2, then the restriction of ϕ to P1 is obviously a partial
field homomorphism. However, not every partial field homomorphism
extends to a homomorphism between the rings. We refer to [19, Theorem
5.3] for the precise relation between partial field homomorphisms and
ring homomorphisms.

Suppose P,P1,P2 are partial fields such that there exist homomor-
phisms ϕ1 : P → P1 and ϕ2 : P → P2. Then we define ϕ1 ⊗ ϕ2 : P →
P1 ⊗ P2 by (ϕ1 ⊗ϕ2)(p) := (ϕ1(p),ϕ2(p)).

Lemma 2.2 ([19, Lemma 2.18]). ϕ1⊗ϕ2 is a partial field homomorphism.

A partial field isomorphism ϕ : P1 → P2 is a bijective homomorphism
with the additional property that ϕ(p+q) ∈ P2 if and only if p+q ∈ P1. If
P1 and P2 are isomorphic then we denote this by P1

∼= P2. A partial field
automorphism is an isomorphism ϕ : P→ P.

2.3 Partial-field matrices

Recall that formally, for ordered sets X and Y , an X × Y matrix A with
entries in a partial field P is a function A : X × Y → P. If X ′ ⊆ X and
Y ′ ⊆ Y , then we denote by A[X ′, Y ′] the submatrix of A obtained by
deleting all rows and columns in X \ X ′, Y \ Y ′. If Z is a subset of X ∪ Y
then we define A[Z] := A[X ∩ Z , Y ∩ Z]. Also, A− Z := A[X \ Z , Y \ Z]. If
X = {1, . . . , r} then we say that A is an r × Y matrix.

An X × Y matrix A with entries in P is a P-matrix if det(A′) ∈ P for
every square submatrix A′ of A.

Definition 2.3. Let A be an X × Y P-matrix, and let x ∈ X , y ∈ Y be such
that Ax y 6= 0. Then we define Ax y to be the ((X \ x) ∪ y)× ((Y \ y) ∪ x)
matrix given by

(Ax y)uv =











A−1
x y if uv = y x

A−1
x yAx v if u= y, v 6= x
−A−1

x yAuy if v = x , u 6= y
Auv − A−1

x yAuyAx v otherwise.

(3)

We say that Ax y is obtained from A by pivoting over x y . The pivot
operation can be interpreted as adding an X×X identity matrix to A, doing
row reduction, followed by a column exchange, and finally removing the
new identity matrix.

Lemma 2.4 ([19, Lemma 2.6]). Let A be an X×Y matrix with entries in P
such that |X | = |Y | and Ax y 6= 0. If det(Ax y − {x , y}) ∈ P then det(A) ∈ P,
and

det(A) = (−1)x+yAx y det(Ax y − {x , y}). (4)

Definition 2.5. Let A be an X × Y P-matrix. We say that A′ is a minor
of A (notation: A′ � A) if A′ can be obtained from A by a sequence of the
following operations:

(i) Multiplying the entries of a row or column by an element of P∗;
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(ii) Deleting rows or columns;

(iii) Permuting rows or columns (and permuting labels accordingly);

(iv) Pivoting over a nonzero entry.

Be aware that in linear algebra a “minor of a matrix” is defined differ-
ently. We use Definition 2.5 because of its relation with matroid minors,
which will be explained in the next section. For a determinant of a square
submatrix we use the word subdeterminant.

Proposition 2.6 ([23, Proposition 3.3]). Let A be a P-matrix. Then AT is
also a P-matrix. If A′ � A then A′ is a P-matrix.

Let A be an X × Y P-matrix, and let A′ be an X ′× Y ′ P-matrix. Then A
and A′ are isomorphic if there exist bijections f : X → X ′, g : Y → Y ′ such
that for all x ∈ X , y ∈ Y , Ax y = A′f (x)g(y).

Let A, A′ be X × Y P-matrices. If A′ can be obtained from A by scaling
rows and columns by elements from P∗, then we say that A and A′ are
scaling-equivalent, which we denote by A∼ A′.

Let A be an X × Y P-matrix, and let A′ be an X ′ × Y ′ P-matrix such
that X ∪ Y = X ′ ∪ Y ′. If A′ � A and A� A′, then we say that A and A′ are
strongly equivalent. If ϕ(A′) is strongly equivalent to A for some partial
field automorphism ϕ (see below for a definition), then we say A′ and A
are equivalent.

Proposition 2.7 ([23, Proposition 5.1]). Let P1,P2 be nontrivial partial
fields and let ϕ : P1→ P2 be a homomorphism. Let A be a P1-matrix. Then

(i) ϕ(A) is a P2-matrix.

(ii) If A is square then det(A) = 0 if and only if det(ϕ(A)) = 0.

2.4 Partial-field matroids

Let A be an r × E P-matrix of rank r. We define the set

BA := {B ⊆ E | |B|= r, det(A[r, B]) 6= 0}. (5)

Theorem 2.8 ([23, Theorem 3.6]). BA is the set of bases of a matroid.

Proof. If P is trivial then BA = ;, and the theorem holds. So suppose
P = (R, G) is nontrivial. If R is a field then the theorem follows immedi-
ately. Let I be a maximal ideal of R, and define F := R/I . Two results in
commutative algebra are that I exists, and that F is a field. Let ϕ : R→ F
be defined by ϕ(p) = p+ I for all p ∈ R. Then ϕ is a ring homomorphism,
which also gives a partial-field homomorphism. From Proposition 2.7 we
have BA =Bϕ(A), and since the latter is the set of bases of a matroid the
theorem follows.

We denote this matroid by M[A] = (E,BA). Observe that, since ma-
trices are labelled in this paper, the ground set of M[A] is fixed by A. If M
is a matroid of rank r on ground set E and there exists an r × E P-matrix
A such that M = M[A], then we say that M is P-representable.
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A matroid is representable if there exist a field F and a matrix A over
F such that M = M[A]. The proof of Theorem 2.8 shows that every
matroid representable over some partial field is also representable over
some field. Conversely, every field is also a partial field, so we can equally
well say that a matroid is representable if there exist a partial field P and
a P-matrix A such that M = M[A].

Partial fields may provide more insight in the representability of a
matroid. The following result is also a corollary of Proposition 2.7.

Corollary 2.9 ([23, Corollary 5.3]). Let P1 and P2 be partial fields and
let ϕ : P1 → P2 be a nontrivial homomorphism. If A is a P1-matrix then
M[ϕ(A)] = M[A].

It follows that, if M is a P1-representable matroid, then M is also P2-
representable.

Lemma 2.10 ([23, Proposition 4.1]). Let A be an r × E P-matrix, and B
a basis of M[A]. Then there exists a P-matrix A′ such that M[A′] = M[A]
and A′[r, B] is an identity matrix.

Now let A be a B × (E \ B) matrix with entries in P. Let A′ be the
B× E matrix A′ = [I A], where I is a B× B identity matrix. For all B′ ⊆ E
with |B′| = |B| we have det(A′[B, B′]) = ±det(A[B \ B′, (E \ B) ∩ B′]).
Hence A′ is a P-matrix if and only if A is a P-matrix. We say that [I A] is a
B-representation of M for basis B.

It follows that the following function is indeed a rank function for a
P-matrix A:

rk(A) :=max{r | A has an r × r submatrix A′ with det(A′) 6= 0}. (6)

Lemma 2.11. Let A be an X × Y P-matrix, and S ⊆ X , T ⊆ Y . If M =
M[I A] and N = M/S\T, then N = M[I ′ A′], where A′ = A− S− T.

Let X , Y be finite, disjoint sets, let A1 be an X × Y P1-matrix, and let
A2 be an X × Y P2-matrix. Let A := A1⊗A2 be the X × Y matrix such that
Auv = ((A1)uv , (A2)uv).

Lemma 2.12 ([19, Lemma 2.19]). If A1 is a P1-matrix, A2 is a P2-matrix,
and M[I A1] = M[I A2] then A1⊗A2 is a P1⊗P2-matrix and M[I A1⊗A2] =
M[I A1].

2.5 Cross ratios and fundamental elements

Let A be an X × Y P-matrix. We define the cross ratios of A as the set

Cr(A) :=
¦

p |
�

1 1
p 1

�

� A
©

. (7)

Lemma 2.13. If A′ � A then Cr(A′)⊆ Cr(A).

An element p ∈ P is called fundamental if 1− p ∈ P. We denote the
set of fundamental elements of P by F (P).

Suppose F ⊆F (P). We define the associates of F as

Asc F :=
⋃

p∈F

Cr
��

1 1
p 1

��

. (8)

We have
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Proposition 2.14. If p ∈ F (P) then Asc{p} ⊆ F (P).
The following lemma gives a complete description of the structure of

Asc{p}.

Lemma 2.15. If p ∈ {0, 1} then Asc{p}= {0, 1}. If p ∈ F (P) \ {0,1} then

Asc{p}=
�

p, 1− p,
1

1− p
,

p

p− 1
,

p− 1

p
,

1

p
	

. (9)

The key observation for a proof is that a minor of a matrix depends, up
to scaling, only on the sequences of row and column indices of the final
matrix. For a 2× 2 matrix there are 24 choices for these. After scaling
these so that the appropriate entries are equal to 1, at most 6 distinct
values appear in the bottom left corner.

By Lemma 2.13, Asc{p} ⊆ Cr(A) for every p ∈ Cr(A).

2.6 Normalization

Let M be a rank-r matroid with ground set E, and let B be a basis of M .
Let G(M , B) be the bipartite graph with vertices V (G) = B ∪ (E \ B) and
edges E(G) = {x y ∈ B×(E\B) | (B\ x)∪ y ∈B}. For each y ∈ E\B there
is a unique matroid circuit CB,y ⊆ B ∪ y , the B-fundamental circuit of y
(see [16, Corollary 1.2.6]). By combining results found, for instance, in
[16, Sections 6.4 and 7.1], it is straightforward to deduce the following:

Lemma 2.16. Let M be a matroid, and B a basis of M.

(i) x y ∈ E(G) if and only if x ∈ CB,y .

(ii) M is connected if and only if G(M , B) is connected.

(iii) If M is 3-connected, then G(M , B) is 2-connected.

Let A be an X × Y matrix, X ∩ Y = ;. With A we associate a bipartite
graph G(A) := (V, E), where V := X ∪ Y and let E := {x y ∈ X × Y | Ax y 6=
0}. The following lemma generalizes a result of Brylawski and Lucas [4],
which can be found in Oxley [16], Theorem 6.4.7. Recall that ∼ denotes
scaling-equivalence.

Lemma 2.17. Let P be a partial field and A a P-matrix. Suppose M =
M[I A].

(i) G(M , X ) = G(A).

(ii) Let T be a maximal spanning forest of G(A) with edges e1, . . . , ek. Let
p1, . . . , pk ∈ P∗. Then there exists a unique matrix A′ ∼ A such that
A′ei
= pi .

Let A be a matrix and T a maximal spanning forest for G(A). We say
that A is T-normalized if Ax y = 1 for all x y ∈ T . By the lemma there
is always an A′ ∼ A that is T -normalized. We say that A is normalized if
it is T -normalized for some maximal spanning forest T , the normalizing
spanning forest.

A walk in a graph G = (V, E) is a sequence W = (v0, . . . , vn) of vertices
such that vi vi+1 ∈ E for all i ∈ {0, . . . , n− 1}. If vn = v0 and vi 6= v j for all
0≤ i < j < n then we say that W is a cycle.
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Definition 2.18. Let A be an X × Y matrix with entries in a partial field P,
with X∩Y = ;. The signature of A is the function σA : (X×Y )∪(Y×X )→ P
defined by σA(vw) = 0 if vw is not an edge of G(A), and by

σA(vw) :=
�

Avw if v ∈ X , w ∈ Y
1/Avw if v ∈ Y, w ∈ X (10)

if vw is an edge of G(A). If C = (v0, v1, . . . , v2n−1, v2n) is a cycle of G(A) then
we define

σA(C) := (−1)|V (C)|/2
2n−1
∏

i=0

σA(vi vi+1). (11)

Lemma 2.19 ([19, Lemma 2.27]). Let A be an X × Y matrix with entries
from a partial field P.

(i) If A′ ∼ A then σA′(C) = σA(C) for all cycles C in G(A).

(ii) Let C = (v0, . . . , v2n) be an induced cycle of G(A) with v0 ∈ X and
n ≥ 3. Suppose A′ := Av0 v1 is such that all entries are in P. Then
C ′ = (v2, v3, . . . , v2n−1, v2) is an induced cycle of G(A′) and σA′(C ′) =
σA(C).

(iii) Let C = (v0, . . . , v2n) be an induced cycle of G(A). If A′ is obtained
from A by scaling rows and columns such that A′vi vi+1

= 1 for all i > 0,

then A′v0 v1
= (−1)|V (C)|/2σA(C) and det(A[V (C)]) = 1−σA(C).

Corollary 2.20. Let A be an X × Y P-matrix. If C is an induced cycle of
G(A) then σA(C) ∈ Cr(A)⊆F (P).

2.7 Examples of partial fields

The following partial fields were studied in [19]. We collected their basic
properties in the appendix of this paper.

Regular. U0 = (Q, 〈−1〉);
Near-regular. U1 = (Q(α), 〈−1,α, 1−α〉);
Dyadic. D= (Q, 〈−1, 2〉);
Sixth-roots-of-unity. S = (C, 〈ζ〉), where ζ is a primitive complex sixth

root of unity, i.e. a root of x2 − x + 1= 0;

Golden ratio. G= (R, 〈−1,τ〉), where τ is the golden ratio, i.e. a root of
x2 − x − 1= 0;

k-Cyclotomic. Kk = (Q(α), 〈−1,α,α− 1,α2 − 1, . . . ,αk − 1〉);
Gaussian. H2 = (C, 〈i, 1− i〉);

Near-regular mod 2. U(2)1 = (GF(2)(α), 〈α, 1−α〉).
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2.8 The Lift Theorem

IfA is a set of matrices then we define

Cr(A ) :=
⋃

A∈A

Cr(A). (12)

The following is a slight modification of [19, Definition 5.11]; see also
[35, Definition 4.3.1].

Definition 2.21. Let P be a partial field and A a set of P-matrices. We
define theA -lift of P as

LAP := (RA /IA , 〈eFA ∪−1〉), (13)

where eFA := {ep | p ∈ Cr(A )} is a set of symbols, one for every cross ratio
of a matrix inA , RA := Z[eFA ] is the polynomial ring over Z with indeter-
minates eFA , and IA is the ideal generated by the following polynomials in
RA :

(i) e0− 0; e1− 1;

(ii) Ý−1+ 1 if −1 ∈ Cr(A );
(iii) ep+ eq− 1, where p, q ∈ Cr(A ), p+ q = 1;

(iv) epeq− 1, where p, q ∈ Cr(A ), pq = 1;

(v) epeqer − 1, where p, q, r ∈ Cr(A ), pqr = 1, and
�

1 1 1
1 p q−1

�

� A (14)

for some A∈A .

The following result is, essentially, [19, Lemma 5.12]. However, the
changes in the definition above require [19, Theorem 3.5] to be restated
in terms of cross ratios for a proof; see [35, Theorem 4.3.3].

Theorem 2.22. Let P be a partial field, let A be a set of P-matrices, and
let M be a matroid. If M = M[I A] for some A ∈ A then M is LAP-
representable.

2.9 Sub-partial fields

(R′, G′) is a sub-partial field of (R, G) if R′ is a subring of R and G′ is a
subgroup of G with −1 ∈ G′.

Definition 2.23. Let P= (R, G) be a partial field, and let S ⊆ P∗. Then

P[S] := (R, 〈S ∪ {−1}〉). (15)

We say that a sub-partial field (R′, G′) of (R, G) is induced if there exists
a subring R′′ ⊆ R′ such that G′ = G ∩ R′′. If P′ is an induced sub-partial
field of P then

F (P′) =F (P)∩ P′. (16)

Not every sub-partial field is induced. Consider, for example, K2[α, 1−
α]∼= U1. We have α2 ∈ F (K2) and α2 ∈ U1, but α2 6∈ F (U1).
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Definition 2.24. Let P,P′ be partial fields with P′ ⊆ P, and let A be a P-
matrix. We say that A is a scaled P′-matrix if A ∼ A′ for some P′-matrix
A′.

Normalization plays an important role:

Lemma 2.25. If A is a scaled P′-matrix and A is normalized, then A is a
P′-matrix.

Proof. Let T be a normalizing spanning forest for A, and let A′ ∼ A be
a P′-matrix. By Lemma 2.17(ii) there exists a T -normalized P′-matrix
A′′ ∼ A′. But by the same lemma, A′′ = A.

Lemma 2.26. Let P,P′ be partial fields such that P′ is an induced sub-
partial field of P. Let A be a P-matrix such that all entries of A are in P′.
Then A is a P′-matrix.

Proof. From (16) it is straightforward to deduce that, if p, q ∈ P′ and
p+ q ∈ P, then p+ q ∈ P′. Combined with the definition of a pivot and
Lemma 2.4 the result now follows easily.

The following theorem will be used in Section 4.

Theorem 2.27. Let A be an X × Y P-matrix. Then A is a scaled P[Cr(A)]-
matrix.

Proof. Let A be a counterexample with |X |+|Y |minimal, and define P′ :=
P[Cr(A)]. Without loss of generality we assume that A is normalized with
normalizing spanning forest T .

Claim 2.27.1. If every entry of A is in P′ and A′ ∼ A is T ′-normalized for
some maximal spanning forest T ′ then every entry of A′ is in P′.

Proof. We prove this for the case T ′ = (T \x y)∪x ′ y ′ for edges x y, x ′ y ′

with x , x ′ ∈ X and y, y ′ ∈ Y . The claim follows by induction. Without
loss of generality assume T, T ′ are trees. Let X1 ∪ Y1, X2 ∪ Y2 be the
components of T \ e such that x ∈ X1, y ∈ Y2. Let p := Ax ′ y ′ . Then A′

is the matrix obtained from A by multiplying all entries in A[X , Y2] by
p−1 and all entries in A[X2, Y ] by p. Since p ∈ P′ the claim follows.

Claim 2.27.2. Every entry of A is in P′.
Proof. Suppose this is not the case. Let H be the subgraph of G(A)
consisting of all edges x ′ y ′ such that Ax ′ y ′ ∈ P′. Let x y be an edge of
G(A) \ H, i.e. p := Ax y ∈ P \ P′. Clearly 1 ∈ P′, so T ⊆ H. Therefore H
contains an x − y path P. Choose x y and P such that P has minimum
length. Then C := P ∪ x y is an induced cycle of G(A). By Corollary
2.20, σA(C) ∈ Cr(A). By Definition 2.18 we have σA(C) = qp for some
q ∈ P′. But then p = q−1σA(C) ∈ P′, a contradiction.

Suppose A has a square submatrix A′ such that det(A′) 6∈ P′. Since |X |+
|Y | is minimal and we can extend a maximal spanning forest of A′ to a
maximal spanning forest of A, we have that A = A′. Observe that A can
not be a 2×2 matrix, since all possible determinants of such matrices are
in P′ by definition. Pick an edge x y such that Ax y 6= 0. By Claim 2.27.1
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we may assume that the normalizing spanning forest T of A contains all
edges x y ′ such that Ax y ′ 6= 0 and x ′ y such that Ax ′ y 6= 0. Consider Ax y ,
the matrix obtained from A by pivoting over x y . All entries of this matrix
are in P′. By Lemma 2.4 we have det(A) = (−1)x+y det(Ax y−{x , y}). The
latter is the determinant of a strictly smaller matrix which is, by induction,
a P′-matrix, a contradiction.

Corollary 2.28. A is a scaled P′-matrix if and only if Cr(A)⊆ P′.
Clearly P[Cr(A)] is the smallest partial field P′ ⊆ P such that A is a

scaled P′-matrix. As a corollary we have the following (which was stated
without proof as Proposition 5.4 in [19]).

Corollary 2.29. If a matroid M is representable over a partial field P, then
M is representable over P[F (P)].

2.10 Connectivity

Let M be a matroid with ground set E. For Z ⊆ E, define the connec-
tivity function λM (Z) := rk(Z) + rk(E − Z) − rk(E). A partition of the
ground set (Z1, Z2) is a k-separation if |Z1|, |Z2| ≥ k and λM (Z1) < k. A
k-separation is exact if λM (Z1) = k− 1. A matroid is k-connected if it has
no k′-separation for any k′ < k, and it is connected if it is 2-connected.

We now translate the concept of connectivity into our language of
matrices. We say that a matrix A is k-connected if M[I A] is k-connected.
We define λA := λM[I A]. The following lemma gives a characterization of
the connectivity function in terms of the ranks of certain submatrices of
A.

Lemma 2.30 (Truemper [24]). Suppose A is an (X1 ∪ X2)× (Y1 ∪ Y2) P-
matrix (where X1, X2, Y1, Y2 are pairwise disjoint). Then

λA(X1 ∪ Y1) = rk(A[X1, Y2]) + rk(A[X2, Y1]). (17)

For the proof of the Confinement Theorem we need a more detailed
understanding of separations. The following definitions are taken from
Geelen, Gerards, and Kapoor [8]. Our notation is different because we
define the concepts only for representation matrices, but it is close to that
of Geelen, Hliněný, and Whittle [10]. Truemper [25] discusses the same
concepts, and also gives a very detailed analysis of the structure of the
resulting matrices. Let A be an X × Y P-matrix, and let A′ := A[E′] for
some E′ ⊆ X ∪ Y . Suppose (Z ′1, Z ′2) is a k-separation of A′. We say that
this k-separation is induced in A if there exists a k-separation (Z1, Z2) of A
with Z ′1 ⊆ Z1 and Z ′2 ⊆ Z2.

Definition 2.31. A blocking sequence for (Z ′1, Z ′2) is a sequence of elements
v1, . . . , vt of E \ E′ such that

(i) λA[E′∪v1](Z
′
1) = k;

(ii) λA[E′∪{vi ,vi+1}](Z
′
1 ∪ vi) = k for i = 1, . . . , t − 1;

(iii) λA[E′∪vt](Z
′
1 ∪ vt) = k;

(iv) No proper subsequence of v1, . . . , vt satisfies the first three properties.
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We need the following results, which can be found in both Geelen
et al. [8] and Truemper [25]:

Lemma 2.32. Let (Z ′1, Z ′2) be an exact k-separation of a submatrix A[E′] of
A. Exactly one of the following holds:

(i) There exists a blocking sequence for (Z ′1, Z ′2);

(ii) (Z ′1, Z ′2) is induced.

Lemma 2.33. If v1, . . . , vt is a blocking sequence, then vi ∈ X implies vi+1 ∈
Y and vi ∈ Y implies vi+1 ∈ X for i = 1, . . . , t − 1.

3 The Confinement Theorem

Definition 3.1. Let P,P′ be partial fields with P′ ⊆ P, B a P′-matrix, and
M a P-representable matroid. Then B confines M if, for all P-matrices A
such that M = M[I A] and B � A, A is a scaled P′-matrix.

Definition 3.2. Let P,P′ be partial fields with P′ ⊆ P, and N , M matroids
such that N � M. Then N confines M if B confines M for every P′-matrix
B with N = M[I B].

Note that if B confines M , then every P′-matrix B′ strongly equivalent
to B confines M , and BT confines M∗.

The following theorem reduces verifying whether B confines a matroid
M to a finite check, provided that M and B are 3-connected and P′ is
induced.

Theorem 3.3 (Confinement Theorem). Let P,P′ be partial fields such that
P′ ⊆ P and P′ is induced. Let B be a 3-connected scaled P′-matrix. Let A
be a 3-connected P-matrix with B as a submatrix. Then exactly one of the
following is true:

(i) A is a scaled P′-matrix;

(ii) A has a 3-connected minor A′ with rows X ′, columns Y ′, such that

• A′ is not a scaled P′-matrix.
• B is isomorphic to A′−U for some U with |U∩X ′| ≤ 1, |U∩Y ′| ≤

1;
• If B is isomorphic to A′−{x , y} then at least one of A′− x , A′− y

is 3-connected.

Let P,P′, B be as in Definition 3.1. If there exists a p ∈ F (P) \F (P′),
then the 2-sum of M[I B] with U2,4 will have a representation by a P-
matrix A that has a minor

�

1 1
p 1

�

, and therefore A is not a scaled P′-matrix.
It follows that the 3-connectivity requirements in the theorem are essen-
tial. The following technical lemma is used in the proof of Theorem 3.3
to deal with 2-separations that may crop up in certain minors of A.

Lemma 3.4. Let P,P′ be partial fields such that P′ is an induced sub-partial
field of P. Let A be a 3-connected X × Y P-matrix that has a submatrix
A′ = A[V, W] such that
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(i) V = X0 ∪ x1, W = Y0 ∪ {y1, y2} for some nonempty X0, Y0 and x1 ∈
X \ X0, y1, y2 ∈ Y \ Y0;

(ii) A[X0, Y0 ∪ {y1}] is connected;

(iii) A[X0, Y0 ∪ {y1}] is a scaled P′-matrix;

(iv) A′ is not a scaled P′-matrix;

(v) λA′(X0 ∪ Y0) = 1.

Then there exists an eX × eY P-matrix eA strongly equivalent to A with a sub-
matrix eA′ = eA[eV ,fW] such that

(I) |eV |= |V |, |fW | ≤ |W |;
(II) X0 ⊂ eV , Y0 ⊂fW, and eA[X0, Y0] = A[X0, Y0];

(III) There exists a ey1 ∈fW \ Y0 such that eA[X0, ey1]∼= A[X0, y1];

(IV) eA′ is not a scaled P′-matrix;

(V) λ
eA′(X0 ∪ Y0)≥ 2.

Proof. Let P, P′, A, X0, Y0, x1, y1, y2 be as in the lemma. We say
that a quadruple (eA, ex1, ey1, ey2) is bad if eA is strongly equivalent to A,
Conditions (I)–(IV) hold with eV = X0 ∪ ex1 and fW = Y0 ∪ {ey1, ey2}, but
λ
eA′(X0 ∪ Y0) = 1. Clearly (A, x1, y1, y2) is a bad quadruple.

Let (eA, ex1, ey1, ey2) be a bad quadruple. Since A is 3-connected, there
exists a blocking sequence for the 2-separation (X0 ∪ Y0, {ex1, ey1, ey2}) of
eA[eV ∪fW]. Suppose (eA, ex1, ey1, ey2) was chosen such that the length of a
shortest blocking sequence v1, . . . , vt is as small as possible. Without loss
of generality (eA, ex1, ey1, ey2) = (A, x1, y1, y2).

A[X0, y2] cannot consist of only zeroes, because otherwise A′ could
not be anything other than a scaled P′-matrix. By scaling we may assume
that

A′ =
�

Y0 y1 y2

X0 A0 c c
x1 0 1 p

�

, (18)

with X0, Y0 nonempty, p 6∈ P′, ci ∈ P′ for all i ∈ X0, and ci = 1 for some
i ∈ X0. We will now analyze the blocking sequence v1, . . . , vt .

Case I. Suppose vt ∈ X . By Definition 2.31(iii) and Lemma 2.30 we
have rk(A[X0 ∪ vt , {y1, y2}]) = 2. If Avt y2

= 0 then Avt y1
6= 0. Since

(A, x1, y2, y1) is a bad quadruple that also has v1, . . . , vt as blocking se-
quence, we may assume that Avt y2

6= 0. Define r := Avt y1
and s := Avt y2

.
Then r 6= s.

Suppose r/s 6∈ P′. If t > 1 then Avt y = 0 for all y ∈ Y0. But then
(A, vt , y1, y2) is again a bad quadruple, and v1, . . . , vt−1 is a blocking se-
quence for the 2-separation (X0∪Y0, {vt , y1, y2}) of A[X0∪vt , Y0∪{y1, y2}],
contradicting our choice of (A, x1, y1, y2). If t = 1 then there is some
y ∈ Y0 such that Avt y 6= 0. Let eA be obtained from A by multiplying row
vt with (Avt y)−1. Then Avt yi

6∈ P′ for exactly one i ∈ {1, 2}. Then eA,
eV := X0 ∪ vt , fW := Y0 ∪ yi satisfy (I)–(V).
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Therefore r/s ∈ P′. Consider the matrix eA obtained from Ax1 y2 by
scaling column y1 by (1− p−1)−1, column x1 by −p, and row y2 by (1−
p−1). Then

eA[X0 ∪ {vt , y2}, Y0 ∪ {y1, x1}] =







Y0 y1 x1

X0 A0 c c
vt d rp−s

p−1
s

y2 0 1 1− p






. (19)

Clearly (eA, y2, y1, x1) is a bad quadruple. Suppose rp−s
p−1
= q ∈ P′. Then

(q− r)p = q−s. But this is only possible if q− r = q−s = 0, contradicting
the fact that r 6= s. The set {v1, . . . , vt} still forms a blocking sequence of
this matrix. Hence we can apply the arguments of the previous case and
obtain again a shorter blocking sequence.

Case II. Suppose vt ∈ Y . Then Ax1 vt
6= 0, again by Definition 2.31(iii)

and Lemma 2.30. Suppose all entries of A[X0, vt] are zero. Let eA be the
matrix obtained from Ax1 y1 by multiplying column y1 with −1, column y2
with (1− p)−1, and row x1 with −1. Then (eA, y1, x1, y2) is a bad quadru-
ple, v1, . . . , vt is a blocking sequence, and eA[X0, vt] is parallel to A[X0, y1].
Therefore we may assume that some entry of A[X0, vt] is nonzero.

If Ax1 vt
∈ P′ then let eA be the matrix obtained from A by scaling row

x1 by p−1. Otherwise eA= A. Then (eA, x1, y2, y1) is again a bad quadruple,
and v1, . . . , vt is still a blocking sequence. Hence we may assume that
Ax1 vt

6∈ P′. Suppose t > 1. Since v1, . . . , vt−1 is not a blocking sequence,
we must have Avt−1 y1

= Avt−1 y2
. But then v1, . . . , vt−1 is a blocking sequence

for the 2-separation (X0 ∪ Y0, {x1, y1, vt}) of A[X0 ∪ x1, Y0 ∪ {y1, vt}]. But
(A, x1, y1, vt) is a bad quadruple, contradicting minimality of v1, . . . , vt .

Hence t = 1. But then rk(A[X0, {vt , y1, y2}]) = 2 and therefore A,
eV := X0 ∪ x1, fW := Y0 ∪ {y1, vt} satisfy (I)–(V).

Truemper [25, Theorem 13.2] and Geelen et al. [10] show that, in
the worst case, a minimum blocking sequence for a 2-separation has size
5. The difference between that result and Lemma 3.4 is that in our case
the minor we wish to preserve is contained in one side of the separation.
This is analogous to what happens in proofs of the Splitter Theorem.

We need three more preliminary results before proving Theorem 3.3.
The effect of a pivot over x y is limited to entries having a distance close
to that of x and y . The following lemma makes this explicit.

Lemma 3.5. Let A be an X ×Y P-matrix, and let d be the distance function
of G(A). Let x ∈ X , y ∈ Y be such that Ax y 6= 0. Let X ′ := {x ′ ∈ X |
dG(A)(x ′, y) > 1} and Y ′ := {y ′ ∈ Y | dG(A)(x , y ′) > 1}. Then Ax y[X ′, Y \
y] = A[X ′, Y \ y] and Ax y[X \ x , Y ′] = A[X \ x , Y ′].

Proof. Ax y ′ = 0 whenever dG(A)(x , y ′) > 1. Likewise, Ax ′ y = 0 whenever
dG(A)(x ′, y)> 1. The result follows immediately from Definition 2.3.

Definition 3.6. Let G = (V, E) be a connected graph, and let U ⊆ V be such
that G[U] is connected. A U-tree T is a spanning tree for G such that T
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contains a shortest v − U path for every v ∈ V \ U. If T ′ is a spanning tree
of G[U] then T is a U-tree extending T ′ if T is a U-tree and T ′ ⊆ T.

Lemma 3.7. Let G = (V, E) be a connected graph, let U ⊆ V , and let T
be a U-tree for G. Let x , y, y ′ ∈ V \ U such that dG(U , y) = dG(U , y ′) =
dG(U , x)− 1, x y ∈ T. Then T ′ := (T \ x y)∪ x y ′ is a U-tree.

Proof. Let W ⊆ V be the set of vertices of the component containing x in
T \ x y . For all v ∈ W , dG(U , v) ≥ dG(U , x). Therefore y ′ 6∈ W and T ′ is
a spanning tree of G(A). Clearly T ′ contains a shortest U − x path, from
which the result follows.

Lemma 3.8. Let A be a connected X × Y P-matrix, let U ⊆ X ∪ Y , and let
T be a U-tree for G(A). Let x ∈ X \ U, y, y ′ ∈ Y be such that dG(A)(U , y) =
dG(A)(U , y ′) = dG(A)(U , x)− 1, x y ∈ T. Let W be the set of vertices of the
component containing x in T \ x y. Suppose A is T -normalized. If A′ ∼ A is
((T \ x y)∪ x y ′)-normalized, then A′[X \W, Y \W] = A[X \W, Y \W].

Proof. A′ is obtained from A by scaling all rows in X ∩W by (Ax y ′)−1 and
all columns in Y ∩W by Ax y ′ .

Proof of Theorem 3.3. Let P,P′ be partial fields such that P′ is an induced
sub-partial field, and let B be an X0 × Y0 P′-matrix. We may assume that
B is normalized, say with spanning tree T0. Note that the theorem holds
for A, B if and only if it holds for AT , BT . Suppose now that the theorem is
false. Then there exists an X×Y P-matrix A with the following properties:

• A is 3-connected;

• X0 ⊆ X , Y0 ⊆ Y , and B = A[X0, Y0];

• Neither (i) nor (ii) holds.

We call such a matrix bad. The following is clear:

Claim 3.3.1. If A is a bad matrix and eA is strongly equivalent to A such that
eA[X0, Y0] = B, then eA is also bad.

We say that a triple (A, T, x y) is a bad triple if

• A is bad;

• T is an (X0 ∪ Y0)-tree extending T0;

• A is T -normalized;

• x ∈ X , y ∈ Y , and Ax y ∈ P \ P′.
Since we assumed the existence of bad matrices, by Lemma 2.26 bad
triples must also exist.

For v ∈ X ∪ Y we define dA(v) := dG(A)(v, X0 ∪ Y0). If x y is an edge
of G(A) then dA(x y) :=max{dA(x), dA(y)}. If x y is an edge of G(A) then
|dA(x)− dA(y)| ≤ 1.

Claim 3.3.2. There exists a bad triple (A, T, x y) with dA(x y)≤ 1.
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Proof. Let (A, T, x y) be chosen among all bad triples such that dA(x y)
is minimal, and after that such that |dA(x) − dA(y)| is maximal. By
transposing A, B if necessary we may assume that dA(x) ≥ dA(y). For
i ≥ 1 we define X i := {x ∈ X | dA(x) = i} and Yi := {y ∈ Y | dA(y) = i}.
We also define X≤i := X0 ∪ · · · ∪ X i and Y≤i := Y0 ∪ · · · ∪ Yi . Suppose
dA(x y)> 1. We distinguish two cases.

Case I. Suppose dA(x) = dA(y) = i. If X i−1 = ; then Yi = ;, con-
tradicting our choice of y . Since A is normalized, Ax y ′ = 1 for some
y ′ ∈ Yi−1, and Ax ′ y = 1 for some x ′ ∈ X i−1. Let p := Ax y and q := Ax ′ y ′ .
Then q ∈ P′.
Let eA be the matrix obtained from Ax y by multiplying row y with p and
column x with −p.
Let eT be an (X0 ∪ Y0)-tree extending T0 in G(Ax y), such that uv ∈ eT for
all uv ∈ T[(X \ x)∪Y≤i−2] and all uv ∈ T[X≤i−2∪(Y \ y)]. By Lemma 3.5
such a tree exists. Let eA ∼ Ax y be eT -normalized. By Lemma 3.5 and
Lemma 3.8, eAx ′ y ′ = (Ax y)x ′ y ′ . But eAx ′ y ′ = q− p−1 6∈ P′, so (eA, eT , x ′ y ′)
is a bad triple with d

eA(x
′ y ′) = i− 1< i, a contradiction.

Case II. Suppose dA(x) = i + 1, dA(y) = i. Since A is normalized,
Ax y ′ = 1 for some y ′ ∈ Y with dA(y ′) = i. If rk(A[X≤i , {y ′, y}]) = 1 then
we apply Lemma 3.4 with A′ = A[X≤i ∪ x , Y≤i−1 ∪ {y

′, y}]. If |fW | < |W |
then eA[ex1, Y0] has some nonzero entry. But then (eA, eT , ex1ey1) would be
a bad triple for some (X0∪Y0)-tree eT with d

eA(ex1ey1)≤ i, a contradiction.
Therefore fW = Y0 ∪ {ey1, ey2} for some ey1, ey2, and rk(eA[X0, {ey1, ey2}]) =
2. Now eA[X0,fW] must be a scaled P′-matrix, since d

eA(v) ≤ i for all
v ∈ X0 ∪fW .
It follows that we may assume that (A, T, x y) were chosen such that
x y ′ ∈ T and rk(A[X≤i , {y ′, y}]) = 2. Suppose there exists an x1 ∈
X≤i with dA(x1) = i − 1 such that Ax1 y 6= 0 and Ax1 y ′ 6= 0. Again by
Lemma 3.8 we may assume that x1 y, x1 y ′ ∈ T . Since

rk(A[X ′′, {y ′, y}]) = 2, (20)

there is a row x2 ∈ X≤i such that

A[{x1, x2, x}, {y ′, y}] =







1 1
r s
1 p






(21)

with r 6= s and p ∈ P \ P′. Consider Ax y . By Lemma 3.5 we have
dAx y (x1) = i − 1 and dAx y (y ′) = i. By the same lemma, there is a
spanning tree T ′ of G(Ax y) with y y ′, x1 y ′, x1 x ∈ T ′ and, for all u ∈
X \ x and v ∈ Y with dAx y (v) ≤ i − 1, uv ∈ T ′ if and only if uv ∈ T . Let
A′ ∼ Ax y be T ′-normalized. Then

A′[{x1, x2, y}, {y ′, x}] =







1 1
pr−s
p−1

s
1 1− p






(22)
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But rp−s
p−1
6∈ P′. Therefore (A′, T ′, x2 y ′) is a bad triple, and dA′(x2 y ′)≤ i,

contradicting our choice of (A, T, x y). Therefore we cannot find an x1
such that Ax1 y ′ 6= 0 and Ax1 y 6= 0. But in that case there exist x1, x2
with dA(x1) = dA(x2) = i − 1 and Ax1 y ′ 6= 0, Ax2 y 6= 0. Again we may
assume without loss of generality that x1 y ′, x2 y, x y ′ ∈ T . Then

A[{x1, x2, x}, {y ′, y}] =







1 0
0 1
1 p






. (23)

Again, consider Ax y . By Lemma 3.5 we have dAx y (x1) = dAx y (x2) = i−1
and dAx y (y ′) = i. By the same lemma, there is a spanning tree T ′ of
G(Ax y) with y y ′, x1 y ′, x2 x ∈ T ′ and, for all u ∈ X \ x and v ∈ Y with
dAx y (v) ≤ i − 1, uv ∈ T ′ if and only if uv ∈ T . Let A′ ∼ Ax y be T ′-
normalized. Then

A′[{x1, x2, y}, {y ′, x}] =







1 0
−p−1 1

1 −p






(24)

But then (A′, T ′, x2 y ′) is a bad triple, and dA′(x2 y ′) ≤ i, again contra-
dicting our choice of (A, T, x y).
Let (A, T, x y) be a bad triple with dA(x y) = 1.

Claim 3.3.3. dA(x) = dA(y) = 1.

Proof. Suppose that x ∈ X0, y ∈ Y1. Let A′ := A[X0, Y0 ∪ y]. Then
A′[X0, y] contains a 1, since y is at distance 1 from B therefore spanned
by T1. It also contains an entry equal to p, so it has at least two nonzero
entries and cannot be a multiple of a column of B. It follows that A′

satisfies the conditions of Case (ii) of the theorem, a contradiction.

Therefore x ∈ X1, y ∈ Y1. Consider the submatrix A′ := A[X0 ∪ x , Y0 ∪ y].
Row Ax y0

= 1 for some y0 ∈ Y0, Ax0 y = 1 for some x0 ∈ X0. Define
b := A[X0, y] and c := A[x , Y0].

Claim 3.3.4. Without loss of generality, b is parallel to A[X0, y0] for some
y0 ∈ Y0 and c is a unit vector with Ax y0

= 1.

Proof. If b is not a unit vector and not parallel to a column of B, then A′

satisfies all conditions of Case (ii), a contradiction. If both b and c are
unit vectors, and c is such that Ax y0

= 1, then Ax y0[X0, (Y0 \ y0∪ x)∪ y]
satisfies all conditions of Case (ii), a contradiction.
By transposing A, B if necessary we may assume that b is parallel to
some column y ′ of B. We scale column y so that the entries of b are
equal to those of A[X0, y ′]. If c has a nonzero in a column y0 6= y ′, then
the matrix A[X0, Y0 \ y ′ ∪ y] is isomorphic to B, and the matrix A′′ :=
A[X0∪x , (Y0\ y ′)∪ y] satisfies all conditions of (ii), a contradiction.

Now we apply Lemma 3.4 with A′ = A[X0∪ x , Y0∪ y], where y1 = y0 and
y2 = y . But the resulting minor eA satisfies all conditions of Case (ii), a
contradiction.
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Whittle’s Stabilizer Theorem [34] is an easy corollary of the Confine-
ment Theorem.

Definition 3.9. Let P be a partial field, and N a 3-connected P-representable
matroid on ground set X ′ ∪ Y ′, where X ′ is a basis. Let M be a 3-connected
matroid on ground set X∪Y with minor N, such that X is a basis of M, X ′ ⊆
X , and Y ′ ⊆ Y . Let A1, A2 be X × Y P-matrices such that M = M[I A1] =
M[I A2]. Then N is a P-stabilizer for M if A1[X ′, Y ′] ∼ A2[X ′, Y ′] implies
A1 ∼ A2 for all choices of A1, A2.

Theorem 3.10 (Stabilizer Theorem). Let P be a partial field, and N a 3-
connected P-representable matroid. Let M be a 3-connected P-representable
matroid having an N-minor. Then at least one of the following is true:

(i) N stabilizes M;

(ii) M has a 3-connected minor M ′ such that

• N does not stabilize M ′;
• N is isomorphic to M ′/x, M ′\ y, or M ′/x \ y, for some x , y ∈

E(M ′);
• If N is isomorphic to M ′/x\ y then at least one of M ′/x , M ′\ y is

3-connected.

Proof. Consider the product partial field P0 := P⊗ P, and define P′0 :=
{(p, p) | p ∈ P}. Then P′0 is an induced sub-partial field of P0. Apply
Theorem 3.3 to all matrices A, B such that M = M[I A], N = M[I B],
B � A, A is a P0-matrix, and B is a P′0-matrix.

4 The universal partial field of a matroid

4.1 The bracket ring

In this section we find the “most general” partial field over which a single
matroid is representable. Our construction is based on the bracket ring
from White [28]. Let M = (E,B) be a rank-r matroid. For every r-tuple
Z ∈ E r we introduce a symbol [Z], the “bracket” of Z , and a symbol [Z].
Suppose Z = (x1, . . . , x r). Define {Z} := {x1, . . . , x r}, and Z/x → y as
the r-tuple obtained from Z by replacing each occurrence of x by y . We
define

ZM := {[Z] | Z ∈ E r} ∪ {[Z] | {Z} is a basis of M}. (25)

Definition 4.1. IM is the ideal in Z[ZM] generated by the following poly-
nomials:

(i) [Z], for all Z such that {Z} 6∈ B;

(ii) [Z]− sgn(σ)[Zσ], for all Z and all permutations σ : {1, . . . , r} →
{1, . . . , r};

(iii) [x1, x2, U][y1, y2, U]−[y1, x2, U][x1, y2, U]−[y2, x2, U][y1, x1, U],
for all x1, x2, y1, y2 ∈ E and U ∈ E r−2;

(iv) [Z][Z]− 1, for all Z such that {Z} ∈ B; for all Z ∈ E r .
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Now we define

BM := Z[ZM]/IM . (26)

Relations (i)–(iii) are the same as those in White’s construction [28].
They accomplish that the brackets behave like determinants in BM . A
special case of (i) occurs when |{Z}| < r. In that case Z must have re-
peated elements. Relations (iv) are not present in the work of White.

Lemma 4.2. Let P= (R, G) be a partial field and A an r× E P-matrix such
that M = M[A]. Then there exists a ring homomorphism ϕ : BM → R.

Proof. Let ϕ′ : Z[ZM]→ F be determined by ϕ′([Z]) = det(A[r, Z]) and
ϕ′([Z]) = det(A[r, Z])−1. We show that IM ⊆ ker(ϕ′), from which the
result follows. Relations (i) follow from linear dependence, Relations (ii)
from antisymmetry, and Relations (iii) from the 3-term Grassmann-Plücker
relations (see, for example, Björner et al. [5], Page 127).

With our addition to White’s construction we are actually able to rep-
resent M over the partial field (BM , 〈ZM ∪ {−1}〉). Note that, as soon
as rk(M) ≥ 2, we can pick a basis Z and an odd permutation σ of the
elements of Z to obtain [Zσ][Z] = −1 ∈ 〈ZM 〉, making the −1 in the
definition of the partial field redundant.

Definition 4.3. Let M be a rank-r matroid. Let B ∈ E r be such that {B} is
a basis of M. Then AM ,B is the B× (E \ B) matrix with entries in BM given
by

(AM ,B)uv := [B/u→ v]/[B]. (27)

Lemma 4.4. AM ,B is a (BM ,B∗M )-matrix.

Proof. Let A := AM ,B. Let x ∈ B, y ∈ E \ B be such that B′ := (B \ x)∪ y is
again a basis. We study the effect of a pivot over x y . Let u ∈ {B} \ x , v ∈
(E \ {B}) \ y . We have

(Ax y)y x = A−1
x y = [B]/[B/x → y], (28)

(Ax y)yv = A−1
x yAx v = ([B]/[B/x → y])([B/x → v]/[B])

= [B′/y → v]/[B/x → y], (29)

(Ax y)ux =−A−1
x yAuy =−([B]/[B/x → y])([B/u→ y]/[B])

= [(B/x → y)/u→ x]/[B/x → y], (30)

(Ax y)uv = Auv − A−1
x yAuyAx v

=
[B/u→ v]
[B]

−
[B]

[B/x → y]
[B/u→ y]
[B]

[B/x → v]
[B]

=
[B/x → y][B/u→ v]− [B/u→ y][B/x → v]

[B][B/x → y]

=
[B][(B/x → y)/u→ v]
[B][B/x → y]

. (31)
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For (30) we note that [(B/x → y)/u→ x] is a permutation of [B/u→ y];
by 4.1(ii) the minus sign vanishes. For (31) we use 4.1(iii). In short, for
every entry u ∈ B′, v ∈ (E \ B′) we have

(Ax y)uv = [B
′/u→ v]/[B′], (32)

so (AM ,B)x y = AM ,B′ . By Lemma 2.4 we find that every subdeterminant

is equal to
∏k

i=1[Zi]/[Bi] for some Zi , Bi ∈ E r with all {Bi} bases, and
therefore, by 4.1(iv), every subdeterminant is either equal to zero or in-
vertible. The lemma follows.

Lemma 4.5. Let M be a matroid such that BM is nontrivial. If B is a basis
of M then M = M[I AM ,B].

Proof. Clearly M and M[I AM ,B] have the same set of bases.

The following theorem gives a characterization of representability:

Theorem 4.6. M is representable if and only if BM is nontrivial.

Proof. ϕ(1) = 1 for any homomorphism ϕ. Therefore, if M is repre-
sentable then Lemma 4.2 implies that BM is nontrivial. Conversely, if
BM is nontrivial then Lemma 4.5 shows that M is representable over the
partial field (BM ,B∗M ).

The following lemma can be proven by adapting the proof of the cor-
responding result in White [28], Theorem 8.1:

Lemma 4.7. BM∗
∼= BM .

Finally we consider the effect of taking a minor.

Definition 4.8. Let M = (E,B) be a matroid, and let U , V ⊆ E be disjoint
ordered subsets such that U is independent and V coindependent. Then we
define

eϕM ,U ,V : BM/U\V → BM , (33)

by eϕM ,U ,V ([Z]) := [Z U] for all Z ∈ (E \ (U ∪ V ))r−|U |.

Note that, in a slight misuse of notation, we have written M/U \V
instead of M/{U}\{V}.

Lemma 4.9. eϕM ,U ,V is a ring homomorphism.

Proof. Let eϕ′ : Z[ZM/U\V ]→ BM be determined by eϕ′([Z]) := [Z U]. It
is easy to see that IM/U\V ⊆ ker( eϕ′). The result follows.
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4.2 The universal partial field

In principle Theorem 4.6 gives a way to compute whether a matroid is
representable: all one needs to do is to test whether 1 ∈ IM , which can
be achieved by computing a Groebner basis over the integers for IM (see
Baines and Vámos [1] for details). However, for practical computations
the partial field (BM ,B∗M ) is somewhat unwieldy. In this subsection we
rectify this problem.

If M is a matroid then we define the set of cross ratios of M as

Cr(M) := Cr(AM ,B). (34)

Note that Cr(M) does not depend on the choice of B. We introduce the
following subring of BM :

RM := Z[Cr(M)]. (35)

Now we define the universal partial field of M as

PM := (RM , 〈Cr(M)∪ {−1}〉). (36)

By Theorem 2.27 we have that, if M is representable, then M is repre-
sentable over PM . We give an alternative construction of this partial field.
Let M = (E,B) be a rank-r matroid on a ground set E, let B ∈B , and let
T be a maximal spanning forest for G(M , B). For every x ∈ B, y ∈ E \ B
we introduce a symbol ax y . For every B′ ∈ B we introduce a symbol iB′ .
We define

YM := {ax y | x ∈ B, y ∈ E \ B} ∪ {iB′ | B′ ∈B}. (37)

Let bAM ,B be the B× (E \ B) matrix with entries ax y .

Definition 4.10. IM ,B,T is the ideal in Z[YM] generated by the following
polynomials:

(i) det(bAM ,B[B \ Z , (E \ B)∩ Z]) if Z 6∈ B;

(ii) det(bAM ,B[B \ Z , (E \ B)∩ Z])iZ − 1 if Z ∈B;

(iii) ax y − 1 if x y ∈ T;

for all Z ⊆ E with |Z |= r.

Now we define

BM ,B,T := Z[YM]/IM ,B,T (38)

and

PM ,B,T := (BM ,B,T , 〈{iB′ | B′ ∈B}∪−1〉). (39)

Finally, bAM ,B,T is the matrix bAM ,B, viewed as a matrix over PM ,B,T .
The construction of PM ,B,T is essentially the same as the construction

in Fenton [7]. The difference between his construction and ours is that
we ensure that the determinant corresponding to every basis is invertible.
The proof of Lemma 4.2 can be adapted to prove the following lemma.
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Lemma 4.11. Let P = (R, G), and let M = M[I A] for some B × (E \
B) P-matrix A that is T -normalized for a maximal spanning forest T of
G(A). Then there exists a ring homomorphism ϕ : BM ,B,T → R such that
ϕ(bAM ,B,T ) = A.

Since two normalized representations of a matroid are equivalent if
and only if they are equal, the following is an immediate consequence of
this lemma:

Corollary 4.12. There is a bijection between nonequivalent representations
of a matroid M over a partial field P and partial-field homomorphisms
PM → P.

Now we can prove that the two constructions described yield isomor-
phic partial fields.

Theorem 4.13. BM ,B,T
∼= RM and PM ,B,T

∼= PM .

Proof. Let AM ,B,T be the unique T -normalized matrix with AM ,B,T ∼ AM ,B.
By Theorem 2.27 AM ,B,T is a PM -matrix. By Lemma 4.11 there exists
a homomorphism ϕ : BM ,B,T → RM such that ϕ(bAM ,B,T ) = AM ,B,T . By
Lemma 4.2 there exists a homomorphism ψ′ : BM → BM ,B,T such that
ψ′(AM ,B) = bAM ,B,T . Note that also ψ′(AM ,B,T ) = bAM ,B,T . Let ψ := ψ′|RM

.
Now ϕ and ψ are both surjective and ϕ(ψ(AM ,B)) = AM ,B, so that we
have ϕ(ψ(p)) = p for all p ∈ Cr(M). Since RM is generated by Cr(M),
the result follows.

We say that a partial field P is universal if P= PM for some matroid M .
The next lemma, which has a straightforward proof, gives a good reason
to study universal partial fields.

Lemma 4.14. Let P be a universal partial field, and letM be the class of
P-representable matroids. Then all M ∈M are P′-representable if and only
if there exists a homomorphism ϕ : P→ P′.

We conclude this subsection by studying the effect of taking a mi-
nor on the universal partial field. The proof of the following lemma is
straightforward.

Definition 4.15. Let M = (E,B) be a matroid, and U , V ⊆ E disjoint
ordered subsets such that U is independent and V coindependent. Then we
define ϕM ,U ,V as the restriction of eϕM ,U ,V to Z[Cr(M/U\V )].

Lemma 4.16. ϕM ,U ,V is a ring homomorphism RM/U\V → RM .

Note that, because of the restriction to cross ratios, ϕM ,U ,V does not
depend on the particular ordering of U and V . The function ϕM ,U ,V is
the canonical homomorphism RM/U\V → RM and induces a partial field
homomorphism PM/U\V → PM .

Lemma 4.17. Let M = (E,B) be a matroid, and U , V ⊆ E disjoint subsets
such that U is independent and V coindependent. Let B ∈ B be such that
U ⊆ B, and let T be a maximal spanning forest for G(M , B) extending a
maximal spanning forest T ′ for G(M/U\V, B\U). Then

ϕM ,U ,V (AM/U\V,B\U ,T ′) = AM ,B,T − U − V. (40)
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Figure 1: Geometric representation of the matroid P8

4.3 Examples

In this section we will see that several well-known partial fields are uni-
versal. Consider the dyadic partial field

D := (Z[ 1
2
], 〈−1,2〉). (41)

Consider also the matroid P8, which is a rank-4 matroid with no 3-element
dependent sets and exactly ten 4-element dependent sets, indicated by
the ten planes in Figure 1.

Theorem 4.18. The dyadic partial field D is the universal partial field of
P8.

Sketch of proof. Pick B = {1,2, 3,4} as basis, and a spanning tree T of
G(M , B) with edges 16, 17,25, 27,28, 38,47. Then

bAP8,B,T =











5 6 7 8

1 0 1 1 x
2 1 0 1 1
3 y z 0 1
4 u v 1 0











, (42)

where x = a18, y = a35, and so on (the ai j are as in (37)). Since
{1,4, 5,8} is dependent, it follows that

det(A[{2,3}, {5, 8}]) = 1− y = 0, (43)

so y = 1 in BP8,B,T . Since {2, 3,6, 7} is dependent, it follows that v = 1.
From the dependency of, respectively, {4,6, 7,8}, {1, 5,6, 7}, {2,5, 6,8},
and {3,5, 7,8} we deduce

1+ (1− x) = 0 (44)

z+ (1− zu) = 0 (45)

u+ x(1− zu) = 0 (46)

u+ x(1− u) = 0. (47)
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Hence x = 2. Substituting this in the fourth equation gives u = 2. Sub-
stituting that in the second equation gives z = 1. Note that the third
equation is also satisfied this way.

To complete the proof we should verify that, for all
�8

4
�

− 10 bases B′,
iB′ is in Z[ 1

2
]. This is equivalent to the fact that all subdeterminants of











5 6 7 8

1 0 1 1 2
2 1 0 1 1
3 1 1 0 1
4 2 1 1 0











(48)

are powers of 2. We leave out this routine but somewhat lengthy check.

Next we describe, for each q, a rank-3 matroid on 3q + 1 elements
for which the universal partial field is GF(q). For q a prime power, let
Qq be the rank-3 matroid consisting of three distinct (q + 1)-point lines
L1, L2, L3 ⊂ PG(2, q) such that L1 ∩ L2 ∩ L3 = ;. Then Qq = Q3(GF(q)∗),
the rank-3 Dowling geometry for the multiplicative group of GF(q). Now
Q+q is the matroid obtained from Qq by adding a point e ∈ PG(2, q)\ (L1∪
L2 ∪ L3). For instance, Q+2

∼= F7.

Theorem 4.19. PQ+q
∼= GF(q).

Proof. Let {e1} = L2 ∩ L3, {e2} = L1 ∩ L3, and {e3} = L1 ∩ L2. Then
B := {e1, e2, e3} is a basis of Q+q . If α is a generator of GF(q)∗ then a
B-representation of Q+q is the following:

A=







e a0 a1 aq−2 b0 bq−2 c0 cq−2

e1 1 0 0 · · · 0 1 · · · 1 1 · · · 1
e2 1 1 1 1 0 0 1 αq−2

e3 1 1 α · · · αq−2 1 · · · αq−2 0 · · · 0






.

(49)

Let T be the spanning tree of G(A) with edges e1 x , e2 x , e3 x and, for all
i ∈ {0, . . . , q− 2}, edges e2ai , e1 bi , e1ci . Then

bAQ+q ,B,T =







e a0 a1 aq−2 b0 bq−2 c0 cq−2

e1 1 0 0 · · · 0 1 · · · 1 1 · · · 1
e2 1 1 1 1 0 0 z0 zq−2
e3 1 x0 x1 · · · xq−2 y0 · · · yq−2 0 · · · 0






.

(50)

Claim 4.19.1. x0 = y0 = z0 = 1.

Proof. det(A[B \ e1, {e, a0}]) = 0, so det(bAQ+q ,B,T [B \ e1, {e, a0}]) = x0−
1= 0. Similarly y0 = 1 and z0 = 1.

Claim 4.19.2. If αk =−1 then xk = yk = zk =−1.
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M M[I A1] M[I A2] M[I A3] Q5

Table 1: Some universal partial fields.

Proof. det(A[B, {a0, b0, ck}]) = det(αk + 1) = 0, so
det(bAQ+q ,B,T [B, {a0, b0, ck}]) = zk + 1 = 0 and zk = −1. Similarly xk =
−1 and yk =−1.

Claim 4.19.3. x l = yl = zl for all l.

Proof. Let k be such that xk =−1. Note that, if GF(q) has characteristic
2, then k = 0. Then det(A[B, {ak, bl , cl}]) = 0, so

det(bAQ+q ,B,T [B, {ak, bl , cl}]) = yl − zl = 0. (51)

Therefore yl = zl . Similarly yl = x l .

By replacing ak by a0 in the previous subproof we obtain

Claim 4.19.4. If αm =−αl then xm =−x l , for all k, l.

Now we establish the multiplicative structure of GF(q):

Claim 4.19.5. If αkαl = αm then xk x l = xm.

Proof. Let n be such that αm = −αn. Then det(A[B, {ak, bn, cl}]) =
αkαl+αn = 0, so det(bAQ+q ,B,T [B, {ak, bn, cl}]) = xk x l+xn = 0, so xk x l =
xm.

Finally we establish the additive structure.

Claim 4.19.6. If αk = αl + 1 then xk = x l + 1.

Proof. Let m be such that αm = −αl . Then det(A[B, {e, ak, bm}]) =
αk + αm − 1 = 0, so det(bAQ+q ,B,T [B, {e, ak, bm}]) = xk + xm − 1 = 0, so
xk = x l + 1.

This completes the proof.

We made no attempt to find a smallest matroid with GF(q) as universal
partial field. For q prime it is known that fewer elements suffice: one
may restrict the line L3 to e2, e3, and the point collinear with e1 and e.
Brylawski [6] showed that yet more points may be omitted. Lazarson
[14] described, for primes p, a rank-(p + 1) matroid with characteristic
set {p}.
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Without proof we give Table 1, which states that many partial fields
that we have encountered so far are indeed universal. In this table we
have

A1 :=











1 0 1 1
1 1 τ−1 τ
0 1 −1 τ
1 −τ−1 τ−1 0











, (52)

A2 :=







−1 0 1 1
1 −1 0 α
0 1 −1 −1






, (53)

A3 :=







1 0 1 1 1
1 1 0 1 α
0 1 1 1 1






, (54)

where A1 is a G-matrix, A2 is a K2-matrix, and A3 is a U(2)1 -matrix.

4.4 The Settlement Theorem

The following theorem is a close relative of a theorem on totally free
expansions of matroids from Geelen et al. [12] (Theorem 2.2).

Definition 4.20. Let M , N be matroids such that N ∼= M/U\V with U inde-
pendent and V coindependent, and let ϕM ,U ,V : RN → RM be the canonical
ring homomorphism from Definition 4.15. Then N settles M if ϕM ,U ,V is
surjective.

Theorem 4.21. Let M , N be matroids such that N = M/U\V with U inde-
pendent and V coindependent. Exactly one of the following is true:

(i) N settles M;

(ii) M has a 3-connected minor M ′ such that

• N does not settle M ′;
• N is isomorphic to M ′/x, M ′ \ y, or M ′/x \ y for some x , y ∈

E(M ′);
• If N is isomorphic to M ′/x\y then at least one of M ′/x and M ′\y

is 3-connected;

Proof. Let P := PM = (RM , 〈Cr(M)∪ {−1}〉). Let

P′ := (ϕM ,U ,V (RN ), 〈Cr(M)∪ {−1}〉 ∩ϕM ,U ,V (RN )). (55)

Then P′ is an induced sub-partial field of P. Let B be a basis of M with U ⊆
B and T be a maximal spanning forest of G(M , B) extending a maximal
spanning forest T ′ of G(N , B \ U). Define B := ϕM ,U ,V (AN ,B\U ,T ′) and
A := AM ,B,T . By Lemma 4.17 B � A. The theorem follows if we apply the
Confinement Theorem to P′, P, B, and A.

Like the theory of totally free expansions, Theorem 4.21 can be used
to show that certain classes of matroids have a bounded number of in-
equivalent representations. We will use the following lemma to prove
such a result in Subsection 5.1.
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Lemma 4.22. Suppose M is a ternary, nonbinary matroid. Then U2,4 settles
M.

Proof. Since M is nonbinary, U2,4 � M . No 3-connected 1-element exten-
sion or coextension of U2,4 is a minor of M . Hence U2,4 settles M .

5 Applications

5.1 Ternary matroids

We will combine the Lift Theorem, in particular Theorem 2.22, with the
Confinement Theorem to give a new proof of the following result by Whit-
tle:

Theorem 5.1 (Whittle [33]). Let M be a 3-connected matroid that is rep-
resentable over GF(3) and some field that is not of characteristic 3. Then M
is representable over at least one of the partial fields U0,U1,S,D.

Proof. Let F be a field that is not of characteristic 3, and define P :=
GF(3) ⊗ F. Define A as the set of all P-matrices. An F-representable
matroid M is ternary if and only if M = M[I A] for some A ∈ A . We
study P′ := LAP. Since −1 is the only nontrivial fundamental element
of GF(3), and (−1)3 6= 1, we have that IA ,P, as in Definition 2.21, is
generated by relations (i)–(iv). Recall that the definition of associates of a
fundamental element from Lemma 2.15. Consider the set C := {Asc{ep} ⊆
P′ | ep ∈ eFA }. Each relation of types (iii),(iv) implies that two elements of
eFA are equal. This results either in the identification of two members of
C , or in a relation within one set of associates. Recall that P[S] denotes
the sub-partial field of P generated by S and −1.

Claim 5.1.1. If ep ∈ eFA then P′[Asc{ep}] is isomorphic to one of U0,U1,D,S.

Proof. If ep ∈ {0, 1} then clearly P′[Asc{ep}] ∼= U0, so assume ep 6= 0, 1.
Consider R := Z[p1, . . . , p6]. For each D ⊆ {(i, j) | i, j ∈ {1, . . . , 6}, i 6=
j}, let ID be the ideal generated by

• pi + pi+1 − 1, for i = 1, 3,5;
• pi pi+1 − 1, for i = 2, 4,6 (where indices are interpreted modulo

6);
• pi − p j , for all (i, j) ∈ D.

By the discussion above, P′[Asc{ep}] ∼= (R/ID, 〈p1, . . . , p6〉) for some D.
There are only finitely many sets D, so the claim can be proven by a
finite check.
If D = ; then P′[Asc{ep}]∼= U1.
If |D| ≥ 1 then we may assume, through relabeling, that (1, j) ∈ D for
some j ∈ {2, . . . , 6}.
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Case I: (1, 2) ∈ D. Then p1 + p2 − 1 = 2p1 − 1 ∈ ID. Therefore
p6(2p1 − 1) = 2 − p6 ∈ ID. Also, p5 + p6 − 1 = p5 + 1 ∈ ID, and
p4p5−1=−p4−1 ∈ ID. Finally, p6(p2p3−1) = p3−p6 ∈ ID. Therefore
p6 = p3 = 2, p1 = p2 = 2−1, and p4 = p5 =−1 in R/ID.
Suppose there is another relation that does not follow from the above.
Then either p1 = p3, or p1 = p4, or p3 = p4. In the first case, p1p6−1=
p2

6−1= 4−1= 3 ∈ ID, so R/ID has characteristic 3, which we assumed
was not so. In the second case, p1p6 − 1 = (−1)2− 1 = −3 ∈ ID, and
again R/ID has characteristic 3. In the third case p3+p4−1= 2p3−1=
4− 1= 3 ∈ ID, again a contradiction.
Hence R/ID

∼= Z[1/2].

Case II: (1, 3) ∈ D. Then p3(p1 + p2 − 1) = p2
1 − p1 + 1 ∈ ID. Also,

p6(p2p3−1) = p2−p6 ∈ ID, and p1(p3+p4−1) = p2
1+p1p4−p1 = p1p4−

1 ∈ ID, so p6(p1p4−1) = p4−p6 ∈ ID. Also, p5(p1p4−1) = p1−p5 ∈ ID,
so p1 = p3 = p5 and p2 = p4 = p6.
If there is another relation then (1,2) ∈ D, which was covered in Case
I.

Case III: (1, 4) ∈ D. Then p1(p5 + p6 − 1) = p4p5 + p1p6 − p1 =
2− p1 ∈ ID. Therefore p1 = p4 = 2, and p5 = p6 = 2−1 in R/ID. Now
p3 + p4 − 1 = p3 + 1 ∈ ID, so p3 = p2 = −1. After relabeling we are
back in Case I.

Case IV: (1,5) ∈ D. Then p6(p4p5 − 1) = p4 − p6 ∈ ID. Moreover,
p3 + p4 − 1 = p3 − p5 ∈ ID. But then (1, 3) ∈ D, which was dealt with
in Case II.

Case V: (1, 6) ∈ D. Then p3(p1p6−1) = p3(p2
1−1) = p3(p1−1)(p1+

1) =−p3p2(p1 + 1) = p1 + 1 ∈ ID, so p1 = −1 in R/ID. Hence p6 = −1
as well, and then p1+p2−1= p2−2 ∈ ID, so p2 = 2. But then p3 = 2−1.
Likewise, p5 = 2 and p4 = 2−1. After relabeling we are back in Case I.

Claim 5.1.2. Suppose 2 ∈ P′. Then each of the following matrices confines
all P-representable matroids to D:

�

1 1
2 1

�

,
�

1 1
1/2 1

�

,
�

1 1
−1 1

�

. (56)

Proof. Observe that, since there is no U2,5-minor in GF(3), there exist
no ternary 3-connected 1-element extensions or coextensions of these
matrices. Hence the claim must hold by the Confinement Theorem.

We immediately have

Claim 5.1.3. Let A ∈ A be 3-connected such that 2 ∈ Cr(A). Then A is a
scaled D-matrix.

We now solve the remaining case.
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Claim 5.1.4. Let A ∈ A be 3-connected such that 2 6∈ Cr(A). Then A is a
scaled U0-matrix or a scaled U1-matrix or a scaled S-matrix.

Proof. Without loss of generality assume that A is normalized. Clearly
2 6∈ P′[Cr(A)]. Suppose there exists a ep ∈ Cr(A)\{0,1}. Define the sub-
partial field P′′ := P′[Asc{ep}]. Since all additive relations are restricted
to just one set of associates, we have

F (P′′) =F (P′[Cr(A)])∩ P′′. (57)

By the Confinement Theorem, then, we have that
�

1 1
p 1

�

confines all
P′[Cr(A)]-representable matroids to P′′. The result follows by Claim 5.1.1.
Finally, if Cr(A) = {0,1} then define P′′ := P′[;]. Clearly P′′ ∼= U0, and
the proof of the claim is complete.

This completes the proof of the theorem.

We can also deduce some more information about the number of rep-
resentations of ternary matroids over other partial fields. We start with a
lemma.

Define the following matrices over Q:

A7 :=







1 1 0 1
1 0 1 1
0 1 1 1






, A8 :=











0 1 1 2
1 0 1 1
1 1 0 1
2 1 1 0











, (58)

and define the matroids F−7 := M[I A7], P8 := M[I A8].

Lemma 5.2. The following statements hold for M ∈ {F−7 , (F−7 )
∗, P8}:

(i) D is a universal partial field for M;

(ii) M is uniquely representable over D.

Proof. The first statement was proven in Theorem 4.18 for P8; a similar
argument proves the other cases. For the second statement, observe that
there is exactly one homomorphism PM → D, since PM = D. Hence, by
Corollary 4.12, there is exactly one representation of M over D.

The next theorem strengthens a result by Whittle [32]:

Theorem 5.3. Let M be a 3-connected matroid representable over a partial
field P. Then M has at most |F (P)| − 2 inequivalent representations over
P. Moreover, the following hold.

(i) If M is regular then M is uniquely representable over P.

(ii) If M is near-regular but not regular then M has exactly |F (P)| − 2
representations over P.

(iii) If M is dyadic but not near-regular then M is uniquely representable
over P.
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Proof. If M is binary then it is well-known that M is uniquely repre-
sentable over any field. The proof generalizes to partial fields. So we
may suppose that M has a U2,4-minor. In that case U2,4 settles M . The
universal partial field of U2,4 is U1 = (Q(α), 〈−1,α, 1 − α〉). For every
p ∈ Asc{α}, there is an automorphism ϕ : U1 → U1 such that ϕ(α) = p.
Since a homomorphism maps fundamental elements to fundamental ele-
ments, no other automorphisms exist. It follows that U2,4 is uniquely rep-
resentable over U1. Let B be a basis of M such that U ⊆ B, V ⊆ E \B, and
M/U\V = U2,4. Let {e1, e2, e3, e4} be the elements of U2,4, with e1, e2 ∈ B,
and let T be a spanning tree for G(AM ,B) containing e1e3, e1e4, e2e4. Sup-
pose A1, . . . , Ak are inequivalent, T -normalized B-representations of M .
Then there exist homomorphisms ϕi : PM → P such that ϕi(bAM ,B,T ) = Ai .
But for each i, ϕi is determined uniquely by the image of

bAM ,B,T [{e1, e2}, {e3, e4}] =
�

1 1
p 1

�

. (59)

Clearly ϕi(p) ∈ F (P) \ {0, 1}, so M has at most |F (P)| − 2 inequivalent
P-representations. If M is near-regular then it follows that this bound is
exact, so assume M is dyadic but not near-regular. Consider the forbidden
minors for GF(4)-representable matroids, determined by Geelen et al. [8].
The only three that are dyadic are F−7 , (F−7 )

∗, and P8. Therefore M must
have one of these as a minor. From the previous lemma it follows that
M is uniquely representable over D, and by combining this with Lemma
4.22 we conclude that every representation of M over a partial field P is
obtained by a homomorphism D → P. Since ϕ(1) = 1 we have ϕ(2) =
ϕ(1) + ϕ(1) = 1 + 1. Therefore this homomorphism is unique, which
completes the proof.

Note that the situation for 6
p

1 matroids is more complex, as it depends
on the number of roots of x2 − x + 1 in the ring R of the partial field
P = (R, G). If R is a field this number will, of course, be 0 or 2, but for
rings this is not necessarily true.

5.2 Quinary matroids

In this subsection we combine the Lift Theorem, the Confinement The-
orem, and the theory of universal partial fields to obtain a detailed de-
scription of the representability of 3-connected quinary matroids with a
specified number of inequivalent representations over GF(5). First we
deal with those quinary matroids that have no U2,5- and no U3,5-minor.

Theorem 5.4 (Semple and Whittle [22]). Let M be a 3-connected matroid
representable over some field. If M has no U2,5- and no U3,5-minor, then M
is either binary or ternary.

It is probably not hard to prove this theorem using an argument simi-
lar to our proof of Theorem 5.1. On combining this with Theorem 5.3 we
obtain:

Corollary 5.5. Let M be a 3-connected quinary matroid with no U2,5- and
no U3,5-minor. Exactly one of the following holds:
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(i) M is regular. In this case M is uniquely representable over GF(5).
(ii) M is near-regular but not regular. In this case M has exactly 3 in-

equivalent representations over GF(5).
(iii) M is dyadic but not near-regular. In this case M is uniquely repre-

sentable over GF(5).

It follows that we only have to characterize those 3-connected quinary
matroids that do have a U2,5- or U3,5-minor. The following lemma is an-
other application of the Stabilizer Theorem.

Lemma 5.6 (Whittle [34]). U2,5 and U3,5 are GF(5)-stabilizers for the class
of 3-connected quinary matroids.

Now we introduce a hierarchy of partial fields, the Hydra-k partial
fields2 H1,H2, . . . ,H6, such that the following theorem holds:

Theorem 5.7. Let M be a 3-connected, quinary matroid that has a U2,5- or
U3,5-minor, and let k ∈ {1, . . . , 6}. The following are equivalent:

(i) M is representable over Hk;

(ii) M has at least k inequivalent representations over GF(5).

First we sketch how to construct the Hydra-k partial fields. For k = 1
we obviously pick H1 := GF(5). For k > 1 we consider Pk :=

⊗k
i=1 GF(5).

Let ϕi : Pk → GF(5) be the ith projection map, i.e. ϕi(x) = x i , and letAk
be the class of 3-connected Pk-matrices A for which the ϕi(A), i = 1, . . . , k
are pairwise inequivalent. For k ≥ 3 we need to invoke the Confinement
Theorem; its use is summarized in the following lemma.

Lemma 5.8. Let k ≥ 3. Let p ∈ Pk, p 6∈ {(0, . . . , 0), (1, . . . , 1)} be such that
three coordinates are equal. Then p 6∈ Cr(Ak).

Proof. Suppose there is an A ∈ Ak such that p ∈ Cr(A). Without loss of
generality we assume that the first three coordinates of p are equal. Let
R′ be the subring of GF(5)k in which the first three coordinates are equal,
and define P′k := (R′,P∗k ∩ R′). Then P′k is clearly an induced sub-partial
field. Suppose

�

1 1 1
1 p q

�

� A (60)

is a Pk-matrix with q 6∈ {p, (0, . . . , 0), (1, . . . , 1)}. Note that q1, q2, q3 6∈
{0,1, p1}. Hence two of q1, q2, q3 must be equal. By permuting we may
assume q1 = q2. But then Lemma 5.6 implies that ϕ1(A)∼ ϕ2(A), contra-
dicting the definition ofAk.

It follows that
�

1 1
p 1

�

(61)

has no 3-connected 1-element extensions or coextensions. But then The-
orem 3.3 implies that this matrix confines A to P′k, again contradicting the
definition ofAk.

2The Hydra is a many-headed mythological monster that grows back two heads whenever
you cut off one. The most famous is the Lernaean Hydra, which was killed by Herakles.
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Now we let Hk := LAk
Pk, as in Definition 2.21. The descriptions of

Hk that we will give below were obtained from LAk
Pk by computing a

Gröbner basis over the integers for the ideal, and choosing a suitable set
of generators.

Let M be a 3-connected matroid having a U2,5- or U3,5-minor, and at
least k inequivalent representations over GF(5). Then M = M[I A] for
some Pk-matrix A∈Ak. By Lemma 5.6 every representation of a U2,5- or
U3,5-minor of M is in Ak, from which it follows that M is representable
over Hk.

For the converse we cannot rule out a priori that there exists an Hk-
representation A′ of U2,5 such that {ϕi(ϕ(A′)) | i = 1, . . . , k} contains
fewer than k inequivalent representations over GF(5). To prove that this
degeneracy does not occur, one may simply check each normalized Hk-
representation of U2,5. This is feasible because it turns out that all of
H1, . . . ,H6 have a finite number of fundamental elements.

Note that the computations described in the preceding paragraphs are
quite elaborate. Rather than reproducing those in the paper we have
made the computer code available for download in a technical report
[20].

With this background we proceed with the description of the partial
fields and their properties. First Hydra-2. This turns out to be the Gaus-
sian partial field, introduced in [19, Section 4.2]. There we proved the
following results:

Lemma 5.9 ([19, Lemma 4.12]). Let M be a 3-connected matroid.

(i) If M has at least 2 inequivalent representations over GF(5), then M is
representable over H2.

(ii) If M has a U2,5- or U3,5-minor and M is representable over H2, then
M has at least 2 inequivalent representations over GF(5).

Theorem 5.10 ([19, Theorem 4.14]). Let M be a 3-connected matroid
with a U2,5- or U3,5-minor. The following are equivalent:

(i) M has 2 inequivalent representations over GF(5);

(ii) M is H2-representable;

(iii) M has two inequivalent representations over GF(5), is representable
over GF(p2) for all primes p ≥ 3, and over GF(p) when p ≡ 1 mod 4.

Next up is Hydra-3. We have

H3 := (Q(α), 〈−1,α,α− 1,α2 −α+ 1〉). (62)

Lemma 5.11.

F (H3) = Asc

¨

1,α,α2 −α+ 1,
α2

α− 1
,
−α

(α− 1)2

«

. (63)

Proof sketch. All fundamental elements are of the form (−1)sαx(α−1)y(α2−
α+ 1)z . The homomorphism ϕ : H3→H2 determined by ϕ(α) = i yields
−2 ≤ y ≤ 2, since fundamental elements must map to fundamental ele-
ments and the norms of fundamental elements of H2 are between 1/2 and
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2. Similarly, ψ : H3→ H2 determined by ψ(α) = 1− i yields −2 ≤ x ≤ 2
and ρ : H3 → H2 determined by ρ(α) = 1−i

2
yields, together with the

preceding bounds, −3 ≤ z ≤ 3. This reduces the proof to a finite check.
We refer to [20] for the computations.

Lemma 5.12. Let M be a 3-connected matroid.

(i) If M has at least 3 inequivalent representations over GF(5), then M is
representable over H3.

(ii) If M has a U2,5- or U3,5-minor and M is representable over H3, then
M has at least 3 inequivalent representations over GF(5).

Proof sketch. Letψ : H3→
⊗3

i=1 GF(5) be determined byψ(α) = (2, 3,4).
A finite check shows for all H3-matrices A=

�

1 1 1
1 p q

�

representing U2,5 that
|{ϕi(ψ(A)) | i = 1, . . . , 3}|= 3. For the computations we refer to [20]. To-
gether with Lemma 5.6 this proves (ii)⇒(i).

Let ϕ : H3 →
⊗3

i=1 GF(5) be determined by ϕ(α) = (2,3, 4). Then
ϕ|F (H3) : F (H3) → Cr(Ak) is a bijection and by Theorem 2.22 and
Lemma 5.6 it follows that all matroids in Ak are representable over H3.
Again, the necessary computations can be found in [20]. Together with
Theorem 5.3 this proves (i)⇒(ii).

Next up is Hydra-4. From now on we omit the proof sketches since no
new technicalities arise. All computations can be found in [20].

H4 := (Q(α,β), 〈−1,α,β ,α− 1,β − 1,αβ − 1,α+ β − 2αβ〉). (64)

There exists a homomorphism ϕ : H4 →
⊗4

k=1 GF(5) determined by
ϕ(α) = (2, 3,3, 4), ϕ(β) = (2, 3,4, 3).

Lemma 5.13.

F (H4) = Asc
n

1,α,β ,αβ , α−1
αβ−1

, β−1
αβ−1

,−α(β−1)
β(α−1)

, (α−1)(β−1)
1−αβ ,

α(β−1)2

β(αβ−1)
, β(α−1)2

α(αβ−1)

o

. (65)

Lemma 5.14. Let M be a 3-connected matroid.

(i) If M has at least 4 inequivalent representations over GF(5), then M is
representable over H4.

(ii) If M has a U2,5- or U3,5-minor and M is representable over H4, then
M has at least 4 inequivalent representations over GF(5).

Next up is Hydra-5.

H5 := (Q(α,β ,γ), 〈 − 1,α,β ,γ,α− 1,β − 1,γ− 1,α− γ,

γ−αβ , (1− γ)− (1−α)β〉). (66)

There exists a homomorphism ϕ : H5 →
⊗5

k=1 GF(5) determined by
ϕ(α) = (2, 3,4, 2,3), ϕ(β) = (3, 2,3, 4,2), ϕ(γ) = (3, 2,3, 4,4).
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Lemma 5.15.

F (H5) = Asc
n

1,α,β ,γ, αβ
γ

, α
γ
, (1−α)γ
γ−α , (α−1)β

γ−1
, α−1
γ−1

, γ−α
γ−αβ ,

(β−1)(γ−1)
β(γ−α) , β(γ−α)

γ−αβ , (α−1)(β−1)
γ−α ,

β(γ−α)
(1−γ)(γ−αβ) ,

(1−α)(γ−αβ)
γ−α , 1−β

γ−αβ

o

. (67)

Lemma 5.16. Let M be a 3-connected matroid.

(i) If M has at least 5 inequivalent representations over GF(5), then M is
representable over H5.

(ii) If M has a U2,5- or U3,5-minor and M is representable over H5, then
M has at least 5 inequivalent representations over GF(5).

Finally we consider H6. There exists a homomorphism ϕ : H5 →
⊗6

k=1 GF(5) determined byϕ(α) = (2,3, 4,2, 3,4), ϕ(β) = (3, 2,3,4, 2,4),
ϕ(γ) = (3,2, 3,4, 4,2). It turns out that for every H5-representation A′ of
U2,5, |{ϕi(ϕ(A′)) | i = 1, . . . , 6}|= 6. Therefore we define

H6 :=H5 (68)

and immediately obtain the following strengthening of Lemma 5.16:

Lemma 5.17. Let M be a 3-connected matroid.

(i) If M has at least 5 inequivalent representations over GF(5), then M is
representable over H5.

(ii) If M has a U2,5- or U3,5-minor and M is representable over H5, then
M has at least 6 inequivalent representations over GF(5).

We now have all ingredients for the proof of Theorem 1.3 from the
introduction.

Proof of Theorem 1.3. Let M be a 3-connected quinary matroid. By Corol-
lary 5.5 all of (i)–(iv) hold when M does not have a U2,5- or U3,5-minor.
Therefore we may assume that M does have a U2,5- or U3,5-minor.

Statement (i) is [19, Theorem 4.12]. For statement (ii), let F be a
field, and let p ∈ F be an element that is not a root of the polynomi-
als x , x − 1, x2 − x + 1. If |F| ≥ 5 then such an element must certainly
exist. In that case ϕ : H3 → F determined by ϕ(α) = p is a nontrivial
homomorphism.

Statement (iv) follows from Lemma 5.17.

One could suspect that Theorem 1.3(iv) is true by observing that there
is a bijection between the representations of U2,5 in A5 and those in A6.
But there seems to be no obvious reason why this bijection should extend
to all A∈A5.

As a final remark we note that the partial fields Hk possess large auto-
morphism groups, since permutations of coordinates in

⊗k
i=1 GF(5) must

correspond with automorphisms of Hk. Our representations of Hk ob-
scure this fact, but expose other information in return. In [20] we verify
that the automorphism groups are isomorphic to Sk, the symmetric group
on k symbols, for k ∈ {1,2, 3,4, 6}.
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6 A number of questions and conjectures

The following conjecture links fundamental elements and universal par-
tial fields.

Conjecture 6.1. If PN has finitely many fundamental elements, then all
PN -representations of N are equivalent.

This conjecture cannot be strengthened by much. Consider the ma-
troid M[I A3] from Table 1, which is obtained from the Fano matroid by
adding one element freely to a line. The homomorphism ϕ : U(2)1 → U(2)1
determined by x 7→ x2 is not an automorphism. A related conjecture is
the following:

Conjecture 6.2. If N is 3-connected then N is a PN -stabilizer for the class
of PN -representable matroids.

Even if this is only true when N is uniquely PN -representable this con-
jecture would have important implications. For example a theorem by
Geelen, Gerards, and Whittle [9] would follow immediately and could,
in fact, be strengthened.

Not all partial fields are universal. For instance, it is not hard to con-
struct partial fields with homomorphisms to GF(3) different from the ones
in Theorem 5.1.

Question 6.3. What distinguishes universal partial fields from partial fields
in general?

We say that a partial field P is level if P = LAP′ for some partial field
P′, whereA is the class of P′-representable matroids.

Question 6.4. Under what conditions is PM level?

The converse of the latter question is also of interest.

Question 6.5. When is a level partial field also universal?

As shown in Table 1, several known level partial fields are universal.
The notable omissions in that table are the Hydra-k partial fields for k ≥
3. We do not know if these are universal. The problem here is that many
partial fields have exactly k homomorphisms to GF(5), and all examples
that we tried from Mayhew and Royle’s catalog of small matroids [15]
turned out to have slightly different universal partial fields.

A somewhat weaker statement is the following. Let M be a class of
matroids. A partial field P is M -universal if, for every partial field P′
such that every matroid in M is P′-representable, there exists a homo-
morphism ϕ : P→ P′.
Conjecture 6.6. LetM be the set of all P-representable matroids, where P
is a level partial field. Then P isM -universal.

As mentioned before, the Settlement Theorem is reminiscent of the
theory of free expansions from Geelen et al. [12]. We offer the following
conjecture:

Conjecture 6.7. Let M be a representable matroid. Then M \e settles M if
and only if e is fixed in M.
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Define the set

χP := {PM | M 3-connected, P-representable matroid}. (69)

Whittle’s classification, Theorem 5.1, amounts to

χGF(3) = {U0,U1,D,S,GF(3)}. (70)

It is known that χGF(4) is infinite, but it might be possible to determine χP
for other partial fields. A first candidate might be GF(4)⊗GF(5), which is
the class of golden ratio matroids. Unfortunately our proof of Theorem 5.1
can not be adapted to this case, since we no longer have control over the
set of fundamental elements. We outline a different approach. For all
PM ∈ χP, there exists a “totally free” matroid N � M that settles M .
Moreover, it is known that all totally free P-representable matroids can
be found by an inductive search. Clearly RM

∼= RN/IN ,M for some ideal
IN ,M . The main problem, now, consists of finding the possible ideals IN ,M .

Conjecture 6.8. If N = M\e, N , M are 3-connected, and N settles M, then
IN ,M is an ideal generated by relations p− q, where p, q ∈ Cr(N).

The conjecture holds for all 3-connected 1-element extensions of a 6-
element, rank-3 matroid. One example is N = U3,6 and M = Φ+3 , the
rank-3 free spike with tip.

Acknowledgements We thank Gordon Royle for his help in querying
the catalog of small matroids (Mayhew and Royle [15]). One of these
queries resulted in the matroid M[I A1] from Table 1. We thank the two
anonymous referees for thoroughly reading our manuscript and providing
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A A catalog of partial fields

In this appendix we summarize all partial fields that have appeared in this
paper and in [19], and some of their basic properties. Like rings, partial
fields form a category. The regular partial field, U0, has a homomorphism
to every other partial field. The references for the lift partial fields (LP)
point to papers that first observed that the two partial fields carry the
same set of matroids. For the actual computation of LP we refer to [19,
Section 5].

The regular partial field, U0:

• U0 = (Z, {−1, 0,1});
• F (U0) = {0,1};
• There is a homomorphism to every partial field P [19, Theorem

2.29];
• Isomorphic to L(GF(2)×GF(3)) [26];
• There are finitely many excluded minors for U0-representability
[26].

The near-regular partial field, U1:
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GF(2) GF(3) GF(4) GF(5) GF(7) GF(8)

Y

U0 U1 U2 U3

S D

H2

K2

G U(2)1

P4

GE

H3

H4

H5

W

Figure 2: Some partial fields and their homomorphisms. A (dashed) arrow
from P′ to P indicates that there is an (injective) homomorphism P′→ P.
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• U1 =
�

Z[α, 1
1−α , 1

α
], 〈−1,α, 1−α〉

�

, where α is an indetermi-
nate;

• F (U1) = Asc{1,α}=
n

0,1,α, 1−α, 1
1−α , α

α−1
, α−1
α

, 1
α

o

[19, Lemma 4.4];
• There is a homomorphism to every field with at least three

elements [33, Theorem 1.4];
• Isomorphic to L(GF(3)×GF(8)) and L(GF(3)×GF(4)×GF(5))
[33, Theorem 1.4];

• There are finitely many excluded minors for U1-representability
[13].

The k-uniform partial field, Uk:

• Uk = (Q(α1, . . . ,αk), 〈Uk〉), where

Uk := { x − y | x , y ∈ {0,1,α1, . . . ,αk}, x 6= y },

and α1, . . . ,αk are indeterminates;
• Introduced by Semple [21] as the k-regular partial field;
• Semple [21] proved that

F (Uk) =
§

a−b
c−b

�

�

� a, b, c ∈ {0, 1,α1, . . . ,αk}, distinct
ª

∪
§

(a−b)(c−d)
(c−b)(a−d)

�

�

� a, b, c, d ∈ {0,1,α1, . . . ,αk}, distinct
ª

;

• There is a homomorphism to every field with at least k + 2
elements [21, Proposition 3.1];

• Finitely many excluded minors for Uk-representability are Uk′ -
representable for some k′ > k [17].

The sixth-roots-of-unity ( 6
p

1) partial field, S:

• S= (Z[ζ], 〈ζ〉), where ζ is a root of x2 − x + 1= 0.
• F (S) = Asc{1,ζ}= {0,1,ζ, 1− ζ};
• There is a homomorphism to GF(3), to GF(p2) for all primes p,

and to GF(p) when p ≡ 1 mod 3 [19, Theorem 2.30];
• Isomorphic to L(GF(3)×GF(4)) [33, Theorem 1.2];
• There are finitely many excluded minors for S-representability
[8, Corollary 1.4].

The dyadic partial field, D:

• D=
�

Z[ 1
2
], 〈−1,2〉

�

;
• F (D) = Asc{1, 2}= {0,1,−1, 2,1/2} [19, Lemma 4.2];
• There is a homomorphism to every field that does not have

characteristic two [33, Theorem 1.1];
• Isomorphic to L(GF(3)×GF(5)) [33, Theorem 1.1];

The union of 6
p

1 and dyadic, Y:

• Y= (Z[ζ, 1
2
], 〈−1,2,ζ〉), where ζ is a root of x2 − x + 1= 0;

• F (Y) = Asc{1,2,ζ} = {0, 1,−1,2, 1/2,ζ, 1− ζ} [19, Lemma
4.6];
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• There is a homomorphism to GF(3), to GF(p2) for all odd
primes p, and to GF(p) when p ≡ 1 mod 3 [19, Theorem 4.7];

• Isomorphic to L(GF(3)×GF(7)) [33, Theorem 1.3].

The 2-cyclotomic partial field, K2:

• K2 =
�

Q(α), 〈−1,α,α− 1,α+ 1〉
�

, where α is an indetermi-
nate;

• F (K2) = Asc{1,α,−α,α2} [19, Lemma 4.16];
• There is a homomorphism to GF(q) for q ≥ 4 [19, Lemma

4.14];
• Isomorphic to L(GF(4)×H2) [19, Theorem 4.17];

The k-cyclotomic partial field, Kk:

• Kk =
�

Q(α), 〈−1,α,α− 1,α2 − 1, . . . ,αk − 1〉
�

, where α is an
indeterminate;

• Kk = (Q(α), 〈{−1} ∪ {Φ j(α) | j = 0, . . . , k}〉), where Φ0(α) = α
and Φ j is the jth cyclotomic polynomial [19, Lemma 4.15];

• There is a homomorphism to GF(q) for q ≥ k+ 2 [19, Lemma
4.14].

The “Dowling lift” of GF(4), W:

• W :=
�

Z[ζ, 1
1+ζ
], 〈−1,ζ, 1+ ζ〉

�

, where ζ is a root of x2− x+
1= 0;

• F (W) = Asc{1,ζ,ζ2}=
�

0, 1,ζ,ζ,ζ2,ζ
2
,ζ+ 1, (ζ+ 1)−1, (ζ+

1)−1,ζ+ 1
	

[35, Lemma 2.5.37];
• There is a homomorphism to every field with an element of

multiplicative order 3 [35, Theorem 3.2.8].

The Gersonides partial field, GE:

• GE=
�

Z[ 1
2
, 1

3
], 〈−1, 2,3〉

�

;
• F (GE) = Asc{1, 2,3,4, 9} [35, Lemma 2.5.40];
• There is a homomorphism to every field that does not have

characteristic two or three [35, 2.5.39].

The partial field P4:

• P4 = (Q(α), 〈−1,α,α−1,α+1,α−2〉), where α is an indeter-
minate;

• F (P4) = Asc{1,α,−α,α2,α−1, (α−1)2} [35, Lemma 2.5.43];
• There is a homomorphism to every field with at least four ele-

ments [35, Lemma 2.5.43].

The Gaussian partial field, H2:

• H2 =
�

Z[i, 1
2
], 〈i, 1− i〉

�

, where i is a root of x2 + 1= 0;

• F (H2) = Asc{1, 2, i}=
¦

0, 1,−1,2, 1
2
, i, i+ 1, i+1

2
, 1− i, 1−i

2
,−i
©

[19, Lemma 4.10];
• There is a homomorphism to GF(p2) for all primes p ≥ 3, and

to GF(p) when p ≡ 1 mod 4 [19, Theorem 4.13];
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• A matroid is H2-representable if and only if it is dyadic or has
at least two inequivalent GF(5)-representations [19, Lemma
4.12];

The Hydra-3 partial field, H3:

• H3 = (Q(α), 〈−1,α, 1−α,α2−α+ 1〉), where α is an indeter-
minate;

• F (H3) = Asc
n

1,α,α2 −α+ 1, α2

α−1
, −α
(α−1)2

o

(Lemma 5.11);

• There is a homomorphism to every field with at least five ele-
ments (Theorem 1.3);

• A matroid is H3-representable if and only if it is regular or
has at least three inequivalent GF(5)-representations (Lemma
5.12).

The Hydra-4 partial field, H4:

• H4 = (Q(α,β), 〈−1,α,β ,α− 1,β − 1,αβ − 1,α+ β − 2αβ〉),
where α, β are indeterminates;

• F (H4) = Asc
n

1,α,β ,αβ , α−1
αβ−1

, β−1
αβ−1

,−α(β−1)
β(α−1)

, (α−1)(β−1)
1−αβ ,

α(β−1)2

β(αβ−1)
, β(α−1)2

α(αβ−1)

o

(Lemma 5.13);

• There is a homomorphism to every field with at least five ele-
ments;

• A matroid is H4-representable if and only if it is near-regular or
has at least four inequivalent GF(5)-representations (Lemma
5.14).

The Hydra-5 partial field, H5 =H6:

• H5 = (Q(α,β ,γ), 〈−1,α,β ,γ,α−1,β −1,γ−1,α−γ,γ−αβ ,
(1− γ)− (1−α)β〉), where α, β , γ are indeterminates;

• F (H5) = Asc
n

1,α,β ,γ, αβ
γ

, α
γ
, (1−α)γ
γ−α , (α−1)β

γ−1
, α−1
γ−1

, (β−1)(γ−1)
β(γ−α) ,

γ−α
γ−αβ , β(γ−α)

γ−αβ , (α−1)(β−1)
γ−α , β(γ−α)

(1−γ)(γ−αβ) ,
(1−α)(γ−αβ)

γ−α , 1−β
γ−αβ

o

(Lemma
5.15);

• There is a homomorphism to every field with at least five ele-
ments;

• A matroid is H5-representable if and only if it is near-regular
or has at least six inequivalent GF(5)-representations (Lemma
5.16).

The near-regular partial field modulo two, U(2)1 :

• U(2)1 = (GF(2)(α), 〈α, 1+α〉), where α is an indeterminate;

• F (U(2)1 ) = {0, 1} ∪Asc
n

α2k
| k ∈ N

o

[35, Lemma 2.5.46];

• There is a homomorphism to GF(2k) for all k ≥ 2 [35, Lemma
2.5.45].

The golden ratio partial field, G:

• G= (Z[τ], 〈−1,τ〉), where τ is the positive root of x2−x−1=
0;
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• F (G) = Asc{1,τ}= {0,1,τ,−τ, 1/τ,−1/τ,τ2, 1/τ2}
[19, Lemma 4.8]

• There is a homomorphism to GF(5), to GF(p2) for all primes p,
and to GF(p) when p ≡±1 mod 5 [19, Theorem 4.9];

• Isomorphic to L(GF(4)×GF(5)) [19, Theorem 4.9].
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